Chapter 11: Q5E (page 623)
Find the sketch the domain of the function \(f\left( {x,y} \right) = \sqrt {2x - y} \)
Short Answer
The domain of the function f is \(\left\{ {\left( {x,y} \right)/2x - y \ge 0} \right\}\)
Chapter 11: Q5E (page 623)
Find the sketch the domain of the function \(f\left( {x,y} \right) = \sqrt {2x - y} \)
The domain of the function f is \(\left\{ {\left( {x,y} \right)/2x - y \ge 0} \right\}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the rate of change of volume when \(r = 120in\)and \(h = 140in\).
Find the value of \(\frac{{\partial N}}{{\partial u}},\frac{{\partial N}}{{\partial v}}\) and \(\frac{{\partial N}}{{\partial w}}\) using chain rule if \(N = \frac{{p + q}}{{p + r}},p = u + vw,q = v + uw\) and \(r = w + uv\) when \(u = 2,v = 3\) and\(w = 4\).
Use polar coordinates to find the limit. If \((r,\theta )\) are polar coordinates of the point \((x, y)\) with \(r \ge 0\) note that \(r \to {0^ + }\) as \((x,y) \to (0,0)\)
\(\mathop {lim}\limits_{(x,y) \to (0,0)} \frac{{{e^{ - {x^2} - {y^2}}} - 1}}{{{x^2} + {y^2}}}\)
Draw a tree diagram of the partial derivatives of the function. The functions are\(t = f(u,v,w)\), where\(u = u(p,q,r,s),v = v(p,q,r,s),w = w(p,q,r,s).\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.