Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find an equation of the plane that passes through the point\((1,2,3)\) and cuts off the smallest volume in the first octants.

Short Answer

Expert verified

Equation is\(6x + 3y + 2z = 18\).

Step by step solution

01

Formula

The equation of plane cutting the coordinate axes at\(a,b,c\)is given by\(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).

02

Equation of plane

Let the required plane meets the coordinate axes at points\(A,B,C\) respective.

Given it passes through\((1,2,3)\).

Therefore, \(\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\)

\(\begin{array}{l}\frac{3}{c} = 1 - \frac{1}{a} - \frac{2}{b}\\\frac{3}{c} = \frac{{ab - b - 2a}}{{ab}}\\c = \frac{{3ab}}{{ab - b - 2a}}\end{array}\)

03

Find volume

Now, the plane forms tetrahedron in the first octant and the volume of tetrahedron

\(\begin{array}{c}V = \frac{1}{6}abc\\ = \frac{1}{6}ab\frac{{3ab}}{{ab - b - 2a}}\\ = \frac{{{a^2}{b^2}}}{{ab - b - 2a}}\end{array}\)

04

Differentiate

Differentiating \(\;v\)partially with respect to\(a\),

\(\begin{array}{c}\frac{{\partial v}}{{\partial a}} = \frac{\partial }{{\partial a}}\left( {\frac{{{a^2}{b^2}}}{{ab - b - 2a}}} \right)\\ = {b^2}\frac{\partial }{{\partial a}}\left( {\frac{{{a^2}}}{{(ab - b - 2a)}}} \right)\\ = \frac{{{b^2}\left( {(ab - b - 2a)\frac{\partial }{{\partial a}}{a^2} - {a^2}\frac{\partial }{{\partial a}}(ab - b - 2a)} \right)}}{{{{(ab - b - 2a)}^2}}}\\ = \frac{{a{b^2}(2ab - 2b - 4a - ab + 2a)}}{{{{(ab - b - 2a)}^2}}}\\ = \frac{{a{b^2}(ab - 2a - 2b)}}{{{{(ab - b - 2a)}^2}}}\end{array}\)

05

Differentiate

Differentiating \(v\)partially with respect to\(b\)

\(\begin{array}{c}\frac{{\partial v}}{{\partial b}} = \frac{\partial }{{\partial b}}\left( {\frac{{{a^2}{b^2}}}{{(ab - b - 2a)}}} \right)\\ = {a^2}\frac{\partial }{{\partial b}}\left( {\frac{{{b^2}}}{{ab - b - 2a}}} \right)\\ = \frac{{{a^2}\left( {(ab - b - 2a)\frac{\partial }{{\partial b}}{b^2} - \frac{\partial }{{\partial b}}(ab - b - 2a)} \right)}}{{{{(ab - b - 2a)}^2}}}\\ = \frac{{{a^2}\left( {(ab - b - 2a)2b - {b^2}(a - 1)} \right)}}{{{{(ab - b - 2a)}^2}}}\\\left. { = \frac{2}{{(ab - b - 2b}}} \right)\end{array}\)

06

Find critical points

For critical points, \(\frac{{\partial v}}{{\partial a}} = 0\)and\(\frac{{\partial v}}{{\partial b}} = 0\)

For\(\frac{{\partial v}}{{\partial a}} = 0\)gives,

\(\begin{array}{l}\frac{{a{b^2}(ab - 2a - 2b)}}{{{{(ab - b - 2a)}^2}}} = 0\\\;a = 0{\rm{ or }}b = 0{\rm{ or }}ab - 2a - 2b = 0\end{array}\)

Since \(a\)and\(b\)cannot be zero.

Therefore,

\(\begin{array}{c}ab - 2a - 2b = 0\\\;ab = 2a + 2b\\\frac{1}{a} + \frac{1}{b} = \frac{1}{2}\,\,\,\,\,\,\,\, - - - - (1)\end{array}\)

07

Find critical point

For\(\frac{{\partial v}}{{\partial b}} = 0\)we have:

\(\begin{array}{l}\frac{{{a^2}b(ab - 4a - b)}}{{ab - b - 2a}} = 0\\a = 0{\rm{ or }}b = 0{\rm{ or }}ab - 4a - b = 0\end{array}\)

Since \(a \ne 0,b \ne 0\)

Therefore,

\(\begin{array}{c}ab - 4a - b = 0\\ab = 4a + b\;\;\;\\\frac{1}{a} + \frac{4}{b} = 1\,\,\,\,\, - - - - (2)\end{array}\)

Using & solving equation (1) & (2) we have\(a = 3,b = 6,c = 9\).

08

Compute second order derivative

Now, differentiating \(\frac{{\partial v}}{{\partial a}}\)partially with respect to\(a\),

\(\begin{array}{c}\frac{{{\partial ^2}v}}{{\partial {a^2}}} = \frac{\partial }{{\partial a}}\frac{{a{b^2}(ab - 2a - 2b)}}{{{{(ab - b - 2a)}^2}}}\\ = {b^2}\frac{\partial }{{\partial a}}\frac{{\left( {{a^2}b - 2{a^2} - 2ab} \right)}}{{{{(ab - b - 2a)}^2}}}\\ = \frac{{{b^2}\left( {(ab - b - 2a)(2ab - 4a - 2b) - \left( {{a^2}b - 2{a^2} - 2ab} \right)2(b - 2)} \right)}}{{{{(ab - b - 2a)}^3}}}\end{array}\)

Therefore\(\frac{{{\partial ^2}v}}{{\partial {a^2}}}{\rm{ at }}a = 3{\rm{ and }}b = 6\)is\(12\).

09

Compute second order derivative

Differentiating \(\frac{{\partial v}}{{\partial a}}\)partially with respect to \(b\),

\(\begin{array}{c}\frac{{{\partial ^2}v}}{{\partial b\partial a}} = \frac{\partial }{{\partial b}}\left( {\frac{{\partial v}}{{\partial a}}} \right)\\a\frac{\partial }{{\partial b}}\frac{{\left( {a{b^3} - 2a{b^2} - 2{b^3}} \right)}}{{{{(ab - b - 2a)}^2}}}\\ = \frac{{a\left( {{{(ab - b - 2a)}^2}\frac{\partial }{{\partial b}}\left( {a{b^3} - 2a{b^2} - 2{b^3}} \right) - \left( {a{b^3} - 2a{b^2} - 2{b^3}} \right)\frac{\partial }{{\partial b}}{{(ab - b - 2a)}^2}} \right.}}{{{{(ab - b - 2a)}^4}}}\\ = \frac{{a\left( {(ab - b - 2a)\left( {3a{b^2} - 4ab - 6{b^2}} \right) - 2(a - 1)\left( {a{b^3} - 3a{b^2} - 2{b^3}} \right)} \right)}}{{{{(ab - b - 2a)}^3}}}\end{array}\)

Therefore at\({\rm{a}} = 3\)and \({\rm{b}} = 6,\frac{{{\partial ^2}v}}{{\partial b\partial a}} = 3\).

10

Compute second order derivative

Differentiating\(\frac{{\partial v}}{{\partial b}}\)partially with respect to \(b\),

\(\begin{array}{c}\frac{{{\partial ^2}v}}{{\partial {b^2}}} = \frac{\partial }{{\partial b}}\left( {\frac{{\partial v}}{{\partial b}}} \right)\\ = \frac{\partial }{{\partial b}}\frac{{{a^2}b(ab - 4a - b)}}{{{{(ab - b - 2a)}^2}}}\\ = \frac{{{a^2}\left( {(ab - b - 2a)\frac{\partial }{{\partial b}}\left( {a{b^2} - 4ab - {b^2}} \right) - \left( {a{b^2} - 4ab - {b^2}} \right)\frac{\partial }{{\partial b}}{{(ab - b - 2a)}^2}} \right)}}{{{{(ab - b - 2a)}^4}}}\\ = \frac{{{a^2}\left( {(2ab - 4a - 2b)(ab - b - 2a) - 2\left( {a{b^2} - 4ab - {b^2}} \right)(a - 1)} \right)}}{{{{(ab - b - 2a)}^3}}}\end{array}\)

At \({\rm{a}} = 3\)and \({\rm{b}} = 6,\frac{{{\partial ^2}v}}{{\partial {b^2}}} = 3\)

11

Compute discriminant

Now, \({\rm{D}}\)at\({\rm{a}} = 3\)and\({\rm{b}} = 6\)is:

\(\begin{array}{c}D = \left( {\frac{{{\partial ^2}v}}{{\partial {a^2}}}} \right)\left( {\frac{{{\partial ^2}v}}{{\partial {b^2}}}} \right) - {\left( {\frac{{{\partial ^2}v}}{{\partial b\partial a}}} \right)^2}\\ = 12 \times 3 - {(3)^2}\\ = 27 > 0\end{array}\)

12

Equation of plane

Volume\(v\) is minimum at\(a = 3,b = 6\)and\(c = 9\)equation of plane is,

\(\begin{array}{c}\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\\\;\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1\;\\\frac{{6x + 3y + 2z}}{{18}} = 1\;\\6x + 3y + 2z = 18\end{array}\)

Hence,

The equation of plane passing through\((1,2,3)\)nand cuts off the smallest volume in the first octant is\(6x + 3y + 2z = 18\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free