Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the equation of the tangent plane to the ellipsoid \({x^2}/{a^2} + {y^2}/{b^2} + {z^2}/{c^2} = 1\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) can be written as

\(\frac{{x{x_0}}}{{{a^2}}} + \frac{{y{y_0}}}{{{b^2}}} + \frac{{z{z_0}}}{{{c^2}}} = 1\)

Short Answer

Expert verified

Thus, it is verified that the equation of the tangent plane to the ellipsoid \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) is \(\frac{{x{x_0}}}{{{a^2}}} + \frac{{y{y_0}}}{{{b^2}}} + \frac{{z{z_0}}}{{{c^2}}} = 1\).

Step by step solution

01

The tangent plane to the surface.

"The tangent plane to the level surface at the point\(P\left( {{x_0},{y_0},{z_0}} \right)\)is defined as\({F_x}\left( {{x_0},{y_0},{z_0}} \right)\left( {x - {x_0}} \right) + {F_y}\left( {{x_0},{y_0},{z_0}} \right)\left( {y - {y_0}} \right) + {F_z}\left( {{x_0},{y_0},{z_0}} \right)\left( {z - {z_0}} \right) = 0{\rm{ }}\).

02

Verify that the equation of the tangent plane to the ellipsoid \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) is \(\frac{{x{x_0}}}{{{a^2}}} + \frac{{y{y_0}}}{{{b^2}}} + \frac{{z{z_0}}}{{{c^2}}} = 1\).

The equation of the ellipsoid is \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\).

Let the surface function be, \(F(x,y,z) = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} - 1\). (1)

The equation of the tangent plane to the given surface at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) is defined by, \({F_x}\left( {{x_0},{y_0},{z_0}} \right)\left( {x - {x_0}} \right) + {F_y}\left( {{x_0},{y_0},{z_0}} \right)\left( {y - {y_0}} \right) + {F_z}\left( {{x_0},{y_0},{z_0}} \right)\left( {z - {z_0}} \right) = 0\). (2)

Take partial derivative with respect to \(x\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) in the equation (1),

\(\begin{aligned}{l}{F_x}(x,y,z) = \frac{\partial }{{\partial x}}\left( {\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} - 1} \right)\\ = \frac{1}{{{a^2}}}(2x)\\ = \frac{{2x}}{{{a^2}}}\end{aligned}\)

Thus, the value of \({F_x}\left( {{x_0},{y_0},{z_0}} \right) = \frac{{2{x_0}}}{{{a^2}}}\).

Take partial derivative with respect to \(y\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) in the equation (1),

\({F_y}(x,y,z) = \frac{\partial }{{\partial x}}\left( {\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} - 1} \right)\)

\(\begin{aligned}{l} = \frac{1}{{{b^2}}}(2y)\\ = \frac{{2y}}{{{b^2}}}\end{aligned}\)

Thus, the value of \({F_y}\left( {{x_0},{y_0},{z_0}} \right) = \frac{{2{y_0}}}{{{b^2}}}\).

Take partial derivative with respect to \(z\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) in the equation (1),

\({F_z}(x,y,z) = \frac{\partial }{{\partial x}}\left( {\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} - 1} \right)\)

\(\begin{aligned}{l} = \frac{1}{{{c^2}}}(2z)\\ = \frac{{2z}}{{{c^2}}}\end{aligned}\)

Thus, the value of \({F_z}\left( {{x_0},{y_0},{z_0}} \right) = \frac{{2{z_0}}}{{{c^2}}}\).

Substitute the respective values in the equation (2) and obtain,

Thus, it is verified that the equation of the tangent plane to the ellipsoid \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) at the point \(\left( {{x_0},{y_0},{z_0}} \right)\) is \(\frac{{x{x_0}}}{{{a^2}}} + \frac{{y{y_0}}}{{{b^2}}} + \frac{{z{z_0}}}{{{c^2}}} = 1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free