Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane\(x + 2y + 3z = 6\).

Short Answer

Expert verified

The volume of largest rectangular box is\(\frac{4}{3}\)unit cube.

Step by step solution

01

Second derivative test

Suppose the second partial derivatives of\(f\)are continuous on a disk with center\({\bf{(a,b)}}\), and suppose that\({f_x}(a,b) = 0\)and\({f_y}(a,b) = 0\). Let

\(D = D(a,b) = {f_{xx}}(a,b){f_{yy}}(a,b) - {\left( {{f_{xy}}(a,b)} \right)^2}\)

(a) If\(D > 0\)and\({f_{xx}}(a,b) > 0\), then\(f(a,b)\)is a local minimum.

(b) If\(D > 0\)and\({f_{xx}}(a,b) < 0\), then\(f(a,b)\)is a local maximum.

(c) If\(D < 0\), then\(f(a,b)\)is not a local maximum or minimum.

02

Assumption

Consider a rectangular box in the first octant with three faces in the coordinate planes and one vertex of the rectangular box is in the plane\(x + 2y + 3z = 6\).

Here, \(x,y,z \ge 0\)because, the rectangular box is lies in the first octant.

Let\((x,y,z)\)be the vertex on the plane\(x + 2y + 3z = 6\), and\(x,y\), and\(z\) are the length, width, and height of the box.

03

Form equation

The volume of a rectangular solid is\(V = \left( {{\rm{ }}length} \right)\left( {width} \right)\left( {height} \right)\).

\(V = xyz\)

The plane equation \(x + 2y + 3z = 6\)for\(z\)as follows:

\(\begin{array}{c}x + 2y + 3z = 6\\3z = 6 - x - 2y\\z = \frac{{6 - x - 2y}}{3}\end{array}\)

Substitute\(z = \frac{{6 - x - 2y}}{3}\)in\(V = xyz\).

\(V(x,y) = \frac{1}{3}\left( {6xy - {x^2}y - 2x{y^2}} \right)\)

04

Compute partial derivative

Differentiate\(V(x,y)\)with respect to\(x\)by assuming\(y\)as constant:

\(\begin{array}{c}{V_x}(x,y) = \frac{\partial }{{\partial x}}\left( {\frac{1}{3}\left( {6xy - {x^2}y - 2x{y^2}} \right)} \right)\\ = \frac{1}{3}\left( {\frac{\partial }{{\partial x}}(6xy) + \frac{\partial }{{\partial x}}\left( { - {x^2}y} \right) + \frac{\partial }{{\partial x}}\left( { - 2x{y^2}} \right)} \right){\rm{ Use the formula }}\frac{d}{{dx}}{x^n} = n{x^{n - 1}}\\ = \frac{1}{3}\left( {6y\frac{\partial }{{\partial x}}(x) - y\frac{\partial }{{\partial x}}\left( {{x^2}} \right) - 2{y^2}\frac{\partial }{{\partial x}}(x)} \right)\\{V_x}(x,y) = \frac{1}{3}\left( {6y - 2xy - 2{y^2}} \right)\,\,\,\,\,\, - - - (1)\end{array}\)

Similarly \({V_y}(x,y) = \frac{1}{3}\left( {6x - {x^2} - 4xy} \right)\,\,\,\,\, - - - (2)\)

05

Find critical points

Set the equation (1) equal to zero as follows:

\(\begin{array}{l}\frac{1}{3}\left( {6y - 2xy - 2{y^2}} \right) = 0\\6y - 2xy - 2{y^2} = 0\\2y(3 - x - y) = 0\\y = 0\;or\,\,3 = x + y\end{array}\)

Set the equation (2) equal to zero as follows:

\(\begin{array}{l}\frac{1}{3}\left( {6x - {x^2} - 4xy} \right) = 0\\6x - {x^2} - 4xy = 0\\x(6 - x - 4y) = 0\\x = 0\;\;\;{\rm{ and }}\;\;\;6 = x + 4y\end{array}\)

Solving we get critical points\((0,0),(0,3),(6,0),{\rm{ and }}(2,1)\)

06

 Step 6: Compute second order partial derivative

To find\(D(x,y)\), find \({V_{xx}}(x,y),{V_{yy}}(x,y)\)and\({V_{xy}}(x,y)\)\(\begin{array}{c}{V_{xx}}(x,y) = \frac{\partial }{{\partial x}}\left( {\frac{1}{3}\left( {6y - 2xy - 2{y^2}} \right)} \right)\\ = \frac{1}{3}\left( {6y\frac{\partial }{{\partial x}}(1) - 2y\frac{\partial }{{\partial x}}(x) - 2{y^2}\frac{\partial }{{\partial x}}(1)} \right)\\{V_{xx}}(x,y) = - \frac{2}{3}y\end{array}\)

And

\(\begin{array}{c}{V_{yy}}(x,y) = \frac{\partial }{{\partial y}}\left( {\frac{1}{3}\left( {6x - {x^2} - 4xy} \right)} \right)\\ = \frac{1}{3}\left( {6x\frac{\partial }{{\partial y}}(1) - {x^2}\frac{\partial }{{\partial y}}(1) - 4x\frac{\partial }{{\partial y}}(y)} \right)\\ = - \frac{4}{3}x\end{array}\)

And

\(\begin{array}{c}{V_{xy}}(x,y) = \frac{\partial }{{\partial x}}\left( {\frac{1}{3}\left( {6x - {x^2} - 4xy} \right)} \right)\\ = \frac{1}{3}\left( {6\frac{\partial }{{\partial x}}(x) - \frac{\partial }{{\partial x}}\left( {{x^2}} \right) - 4y\frac{\partial }{{\partial x}}(x)} \right)\\ = - \frac{{2x + 4y - 6}}{3}\end{array}\)

07

Compute discriminant

Substitute\({V_{xx}},{V_{yy}}\)and\({V_{xy}}\)in\(D\).

\(\begin{array}{c}D = {V_{xx}}(x,y){V_{yy}}(x,y) - {\left( {{V_{xy}}(x,y)} \right)^2}\\ = \left( { - \frac{2}{3}y} \right) - \frac{4}{3}x - {\left( { - \frac{{2x + 4y - 6}}{3}} \right)^2}\\ = \frac{{ - 4{x^2} - 8xy - 16{y^2} + 24x + 48y - 36}}{9}\end{array}\)

08

Determine nature of points

At point\((0,3)\):

\(\begin{array}{l}V(0,3) = 0\\{V_{xx}}(0,3) = - 2 < 0\\D( - 0,3) = - 4 < 0\end{array}\)

So neither local maximum nor minimum.

At point\((6,0)\):

\(\begin{array}{c}V(6,0) = 0\\{V_{xx}}(6,0) = 0\\D(6,0) = - 4 < 0\end{array}\)

So neither local maximum nor minimum.

At point \((2,1)\):

\(\begin{array}{c}V(2,1) = \frac{4}{3}\\{V_{xx}}(2,1) = \frac{{ - 2}}{3} < 0\\D(2,1) = \frac{4}{3} > 0\end{array}\)

So local maximum.

Thus, volume of the largest rectangular box in the first octant is\(\frac{4}{3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use polar coordinates to find the limit. If \((r,\theta )\) are polar coordinates of the point \((x, y)\) with \(r \ge 0\) note that \(r \to {0^ + }\) as \((x,y) \to (0,0)\)

\(\mathop {lim}\limits_{(x,y) \to (0,0)} \left( {\frac{{{x^3} + {y^3}}}{{{x^2} + {y^2}}}} \right)\)

Explain why each function is continuous or discontinuous.

  1. The outdoor temperature as a function of longitude, latitude and time
  2. Elevation (height above sea level) as a function of longitude, latitude and time.
  3. The cost of a taxi ride as a function of distance traveled and time.

(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

Estimate the rate of change of the speed of sound\(C = 1449.2 + 4.6T - 0.055{T^2} + 0.00029{T^3} + 0.016D\) experienced by the driver 20 minutes into the dive and define its unit.

Sketch the graph of the function \(10 - 4x - 5y\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free