Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that the function\(f\] is the function of two variables that is differentiable at\((a,b),\]then\(f\] is continuous at\((a,b).\]

Short Answer

Expert verified

The answer is stated below.

Step by step solution

01

Definition 7.

“If\(z = f(x,y){\rm{,}}\]then\(f\]is differentiable at\((a,b)\]if\(\Delta z\]can be expressed in the form\(\Delta z = {f_x}(a,b)\Delta x + {f_y}(a,b)\Delta y + {\varepsilon _1}\Delta x + {\varepsilon _2}\Delta y,\]where\({\varepsilon _1}\]and\({\varepsilon _2} \to 0.{\rm{ as }}(\Delta x,\Delta y) \to (0,0).\]”

02

Use the definition 7 for calculation.

The function is differentiable at\((a,b).\]

Let the function be\({\rm{z = f(x, y)}}.\]

The function\({\rm{f(x, y)}}\] is differentiable at\((a,b).\]

To show that the function\({\rm{f(x, y)}}\]is continuous at\((a,b),\]it is enough to prove that,

\(\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a + \Delta x,b + \Delta y) = f(a,b)\]

By using definition 7,

\(\begin{aligned}{l}f(a + \Delta x,b + \Delta y) - f(a,b) = \Delta z = {f_x}(a,b)\Delta x + {f_y}(a,b)\Delta y + {\varepsilon _1}\Delta x + {\varepsilon _2}\Delta y\\f(a + \Delta x,b + \Delta y) = f(a,b) + {f_x}(a,b)\Delta x + {f_y}(a,b)\Delta y + {\varepsilon _1}\Delta x + {\varepsilon _2}\Delta y\end{aligned}\]

Taking limit on both sides as\((\Delta x,\Delta y) \to (0,0),\]

\(\begin{aligned}{l}f(a + \Delta x,b + \Delta y) = f(a,b) + {f_x}(a,b)\Delta x + {f_y}(a,b)\Delta y + {\varepsilon _1}\Delta x + {\varepsilon _2}\Delta y\\\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a + \Delta x,b + \Delta y)\\ = \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} \left( {f(a,b) + {f_x}(a,b)\Delta x + {f_y}(a,b)\Delta y + {\varepsilon _1}\Delta x + {\varepsilon _2}\Delta y} \right)\\\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a + \Delta x,b + \Delta y)\\ = \left\{ {\begin{aligned}{*{20}{l}}{\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a,b) + \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {f_x}(a,b)\Delta x + }\\{\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {f_y}(a,b)\Delta y + \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {\varepsilon _1}\Delta x + \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {\varepsilon _2}\Delta y}\end{aligned}} \right\}\end{aligned}\]

If\((\Delta x,\Delta y) \to (0,0),\]then\({\varepsilon _1}\]and\({\varepsilon _2} \to 0.\]

\(\begin{aligned}{l}\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a + \Delta x,b + \Delta y)\\ = \left\{ {\begin{aligned}{*{20}{c}}{\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a,b) + \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {f_x}(a,b)\Delta x + }\\{\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {f_y}(a,b)\Delta y + \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {\varepsilon _1}\Delta x + \mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} {\varepsilon _2}\Delta y}\end{aligned}} \right\}\mathop {\lim }\limits_{(\Delta x,\Delta y) \to (0,0)} f(a + \Delta x,b + \Delta y) = f(a,b)\end{aligned}\]

Hence, the function\({\rm{f(x, y)}}\]is continuous at\((a,b).\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free