Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Find the values of \(\frac{{\partial z}}{{\partial r}}\) and \(\frac{{\partial z}}{{\partial \theta }}\) if \(z = f(x,y)\), where \(x = r\cos \theta \) and \(y = r\sin \theta \).

(b) Show the equation\({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\).

Short Answer

Expert verified

(a) The value of \(\frac{{\partial z}}{{\partial r}}\) is\(\frac{{\partial z}}{{\partial x}} \cdot \cos \theta + \frac{{\partial z}}{{\partial y}} \cdot \sin \theta \).

The value of \(\frac{{\partial z}}{{\partial \theta }}\) is\(\frac{{\partial z}}{{\partial x}}( - r\sin \theta ) + \frac{{\partial z}}{{\partial y}}(r\cos \theta )\).

(b) \({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\).

Step by step solution

01

Chain rule

"Suppose that\(z = f(x,y)\)is a differentiable function of\(x\)and\(y\), where\(x = g(t)\)and\(y = h(t)\)are both differentiable functions of\(t\). Then,\(z\)is differentiable function of\(t\)and\(\frac{{dz}}{{dt}} = \frac{{dz}}{{dx}} \cdot \frac{{dx}}{{dt}} + \frac{{dz}}{{dy}} \cdot \frac{{dy}}{{dt}}\)”

02

Step 2: Find the values of \(\frac{{\partial z}}{{\partial r}}\) and \(\frac{{\partial z}}{{\partial \theta }}\) 

The given function is, \(z = f(x,y)\)

Take the partial derivative of \(x\) and \(y\) with respect to \(r\),

\(\begin{aligned}{l}\frac{{\partial x}}{{\partial r}} = \frac{\partial }{{\partial r}}(r\cos \theta )\\\frac{{\partial x}}{{\partial r}} = \cos \theta \\\frac{{\partial y}}{{\partial r}} = \frac{\partial }{{\partial r}}(r\sin \theta )\\\frac{{\partial y}}{{\partial r}} = \sin \theta \end{aligned}\)

Thus, the partial derivatives, \(\frac{{\partial x}}{{\partial x}} = \cos \theta \) and\(\frac{{\partial y}}{{\partial x}} = \sin \theta \).

Take the partial derivative of \(x\) and \(y\) with respect to\(\theta \),

\(\begin{aligned}{l}\frac{{\partial x}}{{\partial \theta }} = \frac{\partial }{{\partial \theta }}(r\cos \theta )\\\frac{{\partial x}}{{\partial \theta }} = - r\sin \theta \\\frac{{\partial y}}{{\partial \theta }} = \frac{\partial }{{\partial \theta }}(r\sin \theta )\\\frac{{\partial y}}{{\partial \theta }} = r\cos \theta \end{aligned}\)

Thus, the partial derivatives, \(\frac{{\partial x}}{{\partial \theta }} = - r\sin \theta \) and\(\frac{{\partial y}}{{\partial \theta }} = r\cos \theta \).

The partial derivative, \(\frac{{\partial z}}{{\partial r}}\) is computed as follows,

\(\begin{aligned}{l}\frac{{\partial z}}{{\partial r}} = \frac{{\partial z}}{{\partial x}} \cdot \frac{{\partial x}}{{\partial r}} + \frac{{\partial z}}{{\partial y}} \cdot \frac{{\partial y}}{{\partial r}}\\\frac{{\partial z}}{{\partial r}} = \frac{{\partial z}}{{\partial x}} \cdot \cos \theta + \frac{{\partial z}}{{\partial y}} \cdot \sin \theta \end{aligned}\)

Therefore, the value, \(\frac{{\partial z}}{{\partial r}}\) is\(\frac{{\partial z}}{{\partial x}} \cdot \cos \theta + \frac{{\partial z}}{{\partial y}} \cdot \sin \theta \).

Similarly find the value of \(\frac{{\partial z}}{{\partial \theta }}\) as follows,

\(\begin{aligned}{l}\frac{{\partial z}}{{\partial \theta }} = \frac{{\partial z}}{{\partial x}} \cdot \frac{{\partial x}}{{\partial \theta }} + \frac{{\partial z}}{{\partial y}} \cdot \frac{{\partial y}}{{\partial \theta }}\\\frac{{\partial z}}{{\partial \theta }} = \frac{{\partial z}}{{\partial x}}( - r\sin \theta ) + \frac{{\partial z}}{{\partial y}}(r\cos \theta )\end{aligned}\)

Therefore, the value of \(\frac{{\partial z}}{{\partial \theta }}\) is\(\frac{{\partial z}}{{\partial x}} \cdot ( - r\sin \theta ) + \frac{{\partial z}}{{\partial y}} \cdot (r\cos \theta )\).

03

Step 3: Show the equation\({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\)

(b)

First find the value of RHS.

From part (a) the value of \(\frac{{\partial z}}{{\partial x}} \cdot \cos \theta + \frac{{\partial z}}{{\partial y}} \cdot \sin \theta \)

Take square on both the sides

\(\begin{aligned}{l}{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}\left( {\cos \theta } \right) + \frac{{\partial z}}{{\partial y}}\left( {\sin \theta } \right)} \right)^2}\\{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} = \left( {{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^2}{{\left( {\cos \theta } \right)}^2}} \right) + 2\left( {\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\cos \theta } \right)\left( {\frac{{\partial z}}{{\partial y}}} \right)\left( {\sin \theta } \right)} \right) + \left( {{{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^2}{{\left( {\sin \theta } \right)}^2}} \right)\\{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}{\left( {\cos \theta } \right)^2} + 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\cos \theta \sin \theta + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}{\left( {\sin \theta } \right)^2}\end{aligned}\)

Thus, the value,\({\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}{\cos ^2}\theta + 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right)\cos \theta \sin \theta + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}{\sin ^2}\theta \)

From part (a) the value of\(\frac{{\partial z}}{{\partial \theta }} = \frac{{\partial z}}{{\partial x}}( - r\sin \theta ) + \frac{{\partial z}}{{\partial y}}(r\cos \theta )\).

Take square on both sides,

\(\begin{aligned}{l}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}( - r\sin \theta ) + \frac{{\partial z}}{{\partial y}}(r\cos \theta )} \right)^2}\\{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = \left( {{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^2}{{( - r\sin \theta )}^2}} \right) + 2\left( {\left( {\frac{{\partial z}}{{\partial x}}} \right)( - r\sin \theta )\left( {\frac{{\partial z}}{{\partial y}}} \right)(r\cos \theta )} \right) + \left( {{{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^2}{{(r\cos \theta )}^2}} \right)\\{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}{r^2}{\sin ^2}\theta - 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right){r^2}\cos \theta \sin \theta + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}{r^2}{\cos ^2}\theta \end{aligned}\)

Thus, \({\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}{r^2}{\sin ^2}\theta - 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right){r^2}\cos \theta \sin \theta + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}{r^2}{\cos ^2}\theta \)

Substitute the respective values in LHS and obtain,

\(\begin{aligned}{l}{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = \left( {{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^2}{{\cos }^2}\theta + 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right)\cos \theta \sin \theta + {{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^2}{{\sin }^2}\theta } \right) + \left( {\frac{1}{{{r^2}}}} \right)\left( {{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^2}{r^2}{{\sin }^2}\theta - 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right){r^2}\cos \theta \sin \theta + {{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^2}{r^2}{{\cos }^2}\theta } \right)\\{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = \left( {{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^2}{{\cos }^2}\theta + 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right)\cos \theta \sin \theta + {{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^2}{{\sin }^2}\theta } \right) + \left( {{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^2}{{\sin }^2}\theta - 2\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right)\cos \theta \sin \theta + {{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^2}{{\cos }^2}\theta } \right)\end{aligned}\)

Simplify further as follows,

\(\begin{aligned}{l}{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)\\{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}\\{\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2} = {\rm{ LHS}}\end{aligned}\)

Hence,\({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free