Chapter 11: Q34E (page 649)
Find the equation of the tangent plane to a surface\(S\)at the point\({\rm{P(2,1,3)}}.\)
Short Answer
The equation of the tangent plane at\(P(2,1,3)\) is\(12x - 7y + 9z - 44 = 0\).
Chapter 11: Q34E (page 649)
Find the equation of the tangent plane to a surface\(S\)at the point\({\rm{P(2,1,3)}}.\)
The equation of the tangent plane at\(P(2,1,3)\) is\(12x - 7y + 9z - 44 = 0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind and sketch the domain of the function \(f(x,y) = arcsin({x^2} + {y^2} - 2)\)
Determine the values of \(\frac{{\partial z}}{{\partial s}}\)and \(\frac{{\partial z}}{{\partial t}}\) using chain rule if \(z = {e^r}\cos \theta ,r = st\) and \(\theta = \sqrt {{s^2} + {t^2}} {\rm{. }}\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2}si{n^2}y}}{{{x^2} + 2{y^2}}}\)
Determine the set of points at which the function is continuous.
\(G(x,y) = \ln ({x^2} + {y^2} - 4)\)
Show the equation \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\) if\(u = f(x,y)\), where \(x = {e^s}\cos t\) and \(y = {e^s}\sin t.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.