Chapter 11: Q32E (page 656)
Determine the rate of change of volume when \(r = 120in\)and \(h = 140in\).
Short Answer
The rate of change of volume is\(\frac{{dV}}{{dt}} = 8160\pi {\rm{i}}{{\rm{n}}^3}/{\rm{s}}\).
Chapter 11: Q32E (page 656)
Determine the rate of change of volume when \(r = 120in\)and \(h = 140in\).
The rate of change of volume is\(\frac{{dV}}{{dt}} = 8160\pi {\rm{i}}{{\rm{n}}^3}/{\rm{s}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the set of points at which the function is continuous.
\(f(x,y) = \left\{ \begin{aligned}{l}\frac{{xy}}{{{x^2} + xy + {y^2}}}, if(x,y) \ne (0,0)\\0, if(x,y) = (0,0)\end{aligned} \right.\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {1,0} \right)} \frac{{xy - y}}{{{{(x - 1)}^2} + {y^2}}}\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{5{y^4}co{s^2}x}}{{{x^4} + {y^4}}}\)
Determine the set of points at which the function is continuous: \(f(x,y) = \left\{ \begin{aligned}{l}\frac{{{x^2}{y^3}}}{{2{x^2} + {y^2}}}, if(x,y) \ne (0,0)\\1, if(x,y) = (0,0)\end{aligned} \right.\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^4} - 4{y^2}}}{{{x^2} + 2{y^2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.