Chapter 11: Q31E (page 684)
Use Lagrange multipliers to give an alternate solution the indicated exercise in Section\(\;{\bf{11}}.{\bf{7}}\)Exercise\({\bf{33}}\).
Short Answer
Closet points are \((2,1,\sqrt 5 )\)and\((2,1, - \sqrt 5 )\).
Chapter 11: Q31E (page 684)
Use Lagrange multipliers to give an alternate solution the indicated exercise in Section\(\;{\bf{11}}.{\bf{7}}\)Exercise\({\bf{33}}\).
Closet points are \((2,1,\sqrt 5 )\)and\((2,1, - \sqrt 5 )\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the value of \(\frac{{dy}}{{dx}}\) using equation 6.
\({e^y}\sin x = x + xy\)
Let \(g(x,y,z) = {x^3}{y^2}z\sqrt {10 - x - y - z} \)
a) Evaluate g(1,2,3)
b) Find and describe the domain of g.
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {1,0} \right)} \frac{{xy - y}}{{{{(x - 1)}^2} + {y^2}}}\)
Sketch the graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.