The given surface is, \(2{(x - 2)^2} + {(y - 1)^2} + {(z - 3)^2} = 10\).
Let the surface function be, \(F(x,y,z) = 2{(x - 2)^2} + {(y - 1)^2} + {(z - 3)^2} - 10\). (1)
The equation of the tangent plane to the given surface at the point \((3,3,5)\) is defined by, \({F_x}(3,3,5)(x - 3) + {F_y}(3,3,5)(y - 3) + {F_z}(3,3,5)(z - 5) = 0.\) (2)
Take partial derivative with respect to \(x\) at the point \((3,3,5)\) in the equation (1), \({F_x}(x,y,z) = 2{(x - 2)^2} + {(y - 1)^2} + {(z - 3)^2} - 10\)
\(\begin{aligned}{l} = 2(2(x - 2)(1)) + 0 + 0 - 0\\ = 4x - 8\end{aligned}\)
The value of \({F_x}(x,y,z)\) at the point \((3,3,5)\) is,
\({F_x}(3,3,5) = 4(3) - 8 = 4\)
Thus, the value of \({F_x}(3,3,5) = 4\).
Take partial derivative with respect to \(y\) at the point \((3,3,5)\) in the equation (1),
\(\begin{aligned}{l}{F_y}(x,y,z) = 2{(x - 2)^2} + {(y - 1)^2} + {(z - 3)^2} - 10\\ = 0 + 2(y - 1)(1) + 0 - 0\\ = 2y - 2\end{aligned}\)
The value of \({F_y}(x,y,z)\) at the point \((3,3,5)\) is,
\(\begin{aligned}{l}{F_y}(3,3,5) = 2(3) - 2\\ = 4\end{aligned}\)
Thus, the value of \({F_y}(3,3,5) = 4\).
Take partial derivative with respect to \(z\) at the point \((3,3,5)\) in the equation (1),
\(\begin{aligned}{l}{F_z}(x,y,z) = 2{(x - 2)^2} + {(y - 1)^2} + {(z - 3)^2} - 10\\ = 0 + 0 + 2(z - 3)(1) - 0\\ = 2z - 6\end{aligned}\)
The value of \({F_z}(x,y,z)\) at the point \((3,3,5)\) is,
\({F_z}(3,3,5) = 2(5) - 6\)
\( = 4\)
Thus, the value of \({F_z}(3,3,5) = 4\).
Substitute the respective values in the equation (2) and obtain,
\(\begin{aligned}{l}4(x - 3) + 4(y - 3) + 4(z - 5) = 04x - 12 + 4y - 12 + 4z - 20\\ = 04x + 4y + 4z - 44\\ = 0x + y + z - 11\\ = 0\end{aligned}\)
Thus, the equation of the tangent plane to the surface \(2{(x - 2)^2} + {(y - 1)^2} + {(z - 3)^2} = 10\) at the point \((3,3,5)\) is \(x + y + z = 11\).