Chapter 11: Q31E (page 623)
Draw a Contour Map of the function showing several level Curves.
\(f\left( {x,y} \right) = \sqrt {{y^2} - {x^2}} \)
Short Answer
The contour map is:
Chapter 11: Q31E (page 623)
Draw a Contour Map of the function showing several level Curves.
\(f\left( {x,y} \right) = \sqrt {{y^2} - {x^2}} \)
The contour map is:
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the set of points at which the function is continuous.
\(f(x,y) = \left\{ \begin{aligned}{l}\frac{{xy}}{{{x^2} + xy + {y^2}}}, if(x,y) \ne (0,0)\\0, if(x,y) = (0,0)\end{aligned} \right.\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\)
(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
Find the rate of change of \(I\) when \(R = 400\Omega ,I = 0.08A,\frac{{dV}}{{dt}} = - 0.01\;{\rm{V}}/{\rm{s}}\) and \(\frac{{dR}}{{dt}} = 0.03\Omega /{\rm{s}}\).
Sketch the graph of the function \(f\left( {x,y} \right) = {y^2} + 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.