Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A contour map is given for a function \(f\). Use it to estimate \({f_x}(2,1)\)and \({f_y}(2,1) \)

Short Answer

Expert verified

\({f_y}(2,1) \approx - 2\)

\({f_x}(2,1) \approx 3\)

Step by step solution

01

Estimating \({f_x}(2,1)\) and \({f_y}(2,1)\)

Let some function values at some points \((x,y)\):

\(f(3,1) \approx 14\), \(f(2,1) \approx 10\), \(f(1,1) \approx 8\), \(f(2,0) \approx 12\), \(f(12,2) \approx 8\)

02

The partial derivative of \(f\) w.r.t \(x\)

\({f_x}(2,1) = \mathop {\lim }\limits_{n \to 0} \frac{{f(2 + h) - f(2,1)}}{h}\)

Take \(h = \Delta x = 1\)

\({f_x}(2,1) = f(2 + 1,1) - f(2,1)\)

\( \approx f(3,1) - f(2,1)\)

\( \approx 14 - 10\)

\( \approx 4\)

03

Calculating \({f_x}(2,1)\)

Take \(h = \Delta x = - 1\)

\({f_x}(2,1) = f(2 - 1,1) - f(2,1)\)

\( \approx f(1,1) - f(2,1)\)

\( \approx \frac{{8 - 10}}{{ - 1}}\)

\( \approx 2\)

04

Taking average of two values:

The partial derivative of \(f\) w.r.t \(x\) at the point \((2,1)\) is calculated as follow:

\(f(2,1) \approx \frac{{4 + 2}}{2} = 3\)

Therefore, \(f(2,1) \approx 3\)

05

The partial derivative of \(f\) w.r.t \(y\)

Take \(h = \Delta x = 1\), \({f_y}(2,1) = f(2,2) - f(2,1) \approx \frac{{8 - 10}}{1} \approx - 2\)

The partial derivative of \(f\) w.r.t \(y\)at the point \((2,1)\)is \({f_y}(2,1) \approx \frac{{ - 2 - 2}}{2} = - 2\)

Therefore , \({f_y}(2,1) \approx - 2\)

\({f_x}(2,1) \approx 3\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free