Chapter 11: Q2E (page 639)
A contour map is given for a function \(f\). Use it to estimate \({f_x}(2,1)\)and \({f_y}(2,1) \)
Short Answer
\({f_y}(2,1) \approx - 2\)
\({f_x}(2,1) \approx 3\)
Chapter 11: Q2E (page 639)
A contour map is given for a function \(f\). Use it to estimate \({f_x}(2,1)\)and \({f_y}(2,1) \)
\({f_y}(2,1) \approx - 2\)
\({f_x}(2,1) \approx 3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(g(x,y) = \cos (x + 2y)\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2}si{n^2}y}}{{{x^2} + 2{y^2}}}\)
Determine the values of \(\frac{{\partial z}}{{\partial s}}\)and \(\frac{{\partial z}}{{\partial t}}\) using chain rule if \(z = {e^r}\cos \theta ,r = st\) and \(\theta = \sqrt {{s^2} + {t^2}} {\rm{. }}\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{y^2}si{n^2}x}}{{{x^4} + {y^4}}}\)
Sketch the graph of the function \(f\left( {x,y} \right) = {y^2} + 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.