Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use polar coordinates to find the limit. If \((r,\theta )\) are polar coordinates of the point \((x, y)\) with \(r \ge 0\) note that \(r \to {0^ + }\) as \((x,y) \to (0,0)\)

\(\mathop {lim}\limits_{(x,y) \to (0,0)} \left( {\frac{{{x^3} + {y^3}}}{{{x^2} + {y^2}}}} \right)\)

Short Answer

Expert verified

Using polar coordinates

\(\mathop {\lim }\limits_{(x,y) \to (0,0)} \left( {\frac{{{x^3} + {y^3}}}{{{x^2} + {y^2}}}} \right)\)

Step by step solution

01

 Step 1: Use polar coordinates

\(x = r\cos \theta \), \(y = r\sin \theta \) where \(r \ge 0\)

When \((x,y) \to (0,0)\), \(r \to {0^ + }\)

02

calculating limit:

\(\mathop {\lim }\limits_{r \to {0^ + }} \frac{{{r^2}{{\cos }^3}\theta + {r^3}{{\sin }^3}\theta }}{{{r^2}{{\cos }^2}\theta + {r^2}{{\sin }^2}\theta }}\)

\( = \mathop {\lim }\limits_{r \to {0^ + }} \frac{{{r^2}({{\cos }^3}\theta + {{\sin }^3}\theta )}}{{{r^2}({{\cos }^2}\theta + {{\sin }^2}\theta )}}\)

\( = \mathop {\lim }\limits_{r \to {0^ + }} {r^2}({\cos ^3}\theta + {\sin ^3}\theta )\)

\( = 0\)

Hence, \(\mathop {\lim }\limits_{(x,y) \to (0,0)} \left( {\frac{{{x^3} + {y^3}}}{{{x^2} + {y^2}}}} \right) = 0\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find h(x, y) = g(f(x, y)) and the set on which h is continuous.

\(g(t) = t + \ln t{\rm{ , }}f(x,y) = \frac{{1 - xy}}{{1 + {x^2}{y^2}}}\)

Find the limit, if it exists, or show that the limit does not exist.

\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\)

Find h(x, y) = g(f(x, y)) and the set on which h is continuous.

\(g(t) = {t^2} + \sqrt t {\rm{ , }}f(x,y) = 2x + 3y - 6\)

Find the limit, if it exists, or show that the limit does not exist.

\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2} + {y^2}}}{{\sqrt {{x^2} + {y^2} + 1} - 1}}\)

(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free