To graph this equation, notice that the equation can be put into the form of an ellipse where the coefficient in front of the x and y terms are the x and y dimensions of the ellipse, respectively;
\(\begin{aligned}{l}\ln \left( {{x^2} + 4{y^2}} \right) &= c\\{x^2} + 4{y^2} &= {e^c}\\{x^2} + {(2y)^2} &= {e^c}\\{\left( {\frac{x}{{{e^{\frac{c}{2}}}}}} \right)^2} + {\left( {\frac{{2y}}{{{e^{\frac{c}{2}}}}}} \right)^2} &= 1\end{aligned}\)
The equation where\(c = 4\)is;
\(\begin{aligned}{l}{\left( {\frac{x}{{{e^{\frac{4}{2}}}}}} \right)^2} + {\left( {\frac{{2y}}{{{e^{\frac{4}{2}}}}}} \right)^2} &= 1\\{\left( {\frac{x}{{{e^2}}}} \right)^2} + {\left( {\frac{{2y}}{{{e^2}}}} \right)^2} &= 1\end{aligned}\)
Thus the level curve look like Elliptical Curves.