Chapter 11: Q26E (page 675)
Find the absolute maximum and minimum values of\(f\)the set\(D\).
Short Answer
Absolute minimum is\(0\)& absolute maximum is\(13\) .
Chapter 11: Q26E (page 675)
Find the absolute maximum and minimum values of\(f\)the set\(D\).
Absolute minimum is\(0\)& absolute maximum is\(13\) .
All the tools & learning materials you need for study success - in one app.
Get started for freeFind and sketch the domain of the function \(f(x,y) = arcsin({x^2} + {y^2} - 2)\)
Find the value of \(\frac{{dy}}{{dx}}\) using equation 6.
\(\cos (xy) = 1 + \sin y\)
Suppose that the equation \(F(x,y,z) = 0\) implicitly defines each of the three variables \(x,y\), and \(z\) as functions of the other two: \(z = f(x,y),y = g(x,z),x = h(y,z)\). If \(F\) is differentiable and \({F_s},{F_y}\), and \({F_z}\) are all nonzero, show that
\(\frac{{\partial z}}{{\partial x}}\frac{{\partial x}}{{\partial y}}\frac{{\partial y}}{{\partial z}} = - 1\).
Sketch the graph of the function \(f\left( {x,y} \right) = 2 - x\)
(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.