Chapter 11: Q24E (page 656)
Find the value of \(\frac{{dy}}{{dx}}\) using equation 6.
\({e^y}\sin x = x + xy\)
Short Answer
The value of \(\frac{{dy}}{{dx}}\) is\(\frac{{1 + y - {e^y}\cos x}}{{{e^y}\sin x - x}}\).
Chapter 11: Q24E (page 656)
Find the value of \(\frac{{dy}}{{dx}}\) using equation 6.
\({e^y}\sin x = x + xy\)
The value of \(\frac{{dy}}{{dx}}\) is\(\frac{{1 + y - {e^y}\cos x}}{{{e^y}\sin x - x}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of the function \(10 - 4x - 5y\)
Find the value of \(\frac{{\partial N}}{{\partial u}},\frac{{\partial N}}{{\partial v}}\) and \(\frac{{\partial N}}{{\partial w}}\) using chain rule if \(N = \frac{{p + q}}{{p + r}},p = u + vw,q = v + uw\) and \(r = w + uv\) when \(u = 2,v = 3\) and\(w = 4\).
Find and sketch the domain of the function \(f(x,y,z) = ln(16 - 4{x^2} - 4{y^2} - {z^2})\)
Determine the values of \(\frac{{\partial z}}{{\partial s}}\)and \(\frac{{\partial z}}{{\partial t}}\) using chain rule if \(z = {e^r}\cos \theta ,r = st\) and \(\theta = \sqrt {{s^2} + {t^2}} {\rm{. }}\)
Show the equation \({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} - {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = \frac{{\partial z}}{{\partial s}}\frac{{\partial z}}{{\partial t}}\) holds true.
What do you think about this solution?
We value your feedback to improve our textbook solutions.