Chapter 11: Q19E (page 623)
Sketch the graph of the function \(f\left( {x,y} \right) = \sqrt {4 - 4{x^2} - {y^2}} \)
Short Answer
The graph of the function \(f\left( {x,y} \right) = \sqrt {4 - 4{x^2} - {y^2}} \)
Chapter 11: Q19E (page 623)
Sketch the graph of the function \(f\left( {x,y} \right) = \sqrt {4 - 4{x^2} - {y^2}} \)
The graph of the function \(f\left( {x,y} \right) = \sqrt {4 - 4{x^2} - {y^2}} \)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the equation\(\frac{{{\partial ^2}z}}{{\partial r\partial s}}\)if\(z = f(x,y){\rm{,}}\) where\(x = {r^2} + {s^2}\) and\(y = 2rs{\rm{. }}\)
Calculate the values of \({g_u}(0,0)\) and \({g_v}(0,0)\) using the given table of values if \(g(u,v) = f\left( {{e^u} + \sin v,{e^u} + \cos v} \right)\) where \(f\)is a differentiable function of \(x\) and \(y.\)
Determine the set of points at which the function is continuous.
\(H\left( {x,y} \right) = \frac{{{e^x} + {e^y}}}{{{e^{xy}}{\rm{ - }}1}}\)
Determine the derivative \(\frac{{dz}}{{dt}}\)at the given value of \(t.\)The functions are \(z = f(x,y),x = g(t)\) and \({\rm{ }}y = h(t){\rm{.}}\)
Determine the set of points at which the function is continuous.
\(f(x,y,z) = \arcsin ({x^2} + {y^2} + {z^2})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.