Chapter 11: Q16E (page 623)
Sketch the graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\)
Short Answer
The graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\) is
Chapter 11: Q16E (page 623)
Sketch the graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\)
The graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\) is
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the equation \(\left( {\frac{{{\partial ^2}z}}{{\partial {x^2}}}} \right) + \left( {\frac{{{\partial ^2}z}}{{\partial {y^2}}}} \right) = \left( {\frac{{{\partial ^2}z}}{{\partial {r^2}}}} \right) + \frac{1}{{{r^2}}}\left( {\frac{{{\partial ^2}z}}{{\partial {\theta ^2}}}} \right) + \frac{1}{r} \cdot \frac{{\partial z}}{{\partial r}},\) where \(x = r\cos \theta \) and \(y = r\sin \theta .\)
Find the value of \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\) using equation 7.
\({e^z} = xyz\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{xy + y{z^2} + x{z^2}}}{{{x^2} + {y^2} + {z^2}}}\)
Determine the set of points at which the function is continuous.
\(f(x,y) = \frac{{1 + {x^2} + {y^2}}}{{1 - {x^2} - {y^2}}}\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^4} - 4{y^2}}}{{{x^2} + 2{y^2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.