Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the extreme values of\(f\)subject to both constraints.

\(f(x,y,z) = {x^2} + {y^2} + {z^2};\;\;\;x - y = 1,\;\;\;{y^2} - {z^2} = 1\)

Short Answer

Expert verified

Maximum: \(f(2,1,0) = 5\)

Minimum: \(f(0 - 1,0) = 1\)

Step by step solution

01

Method of Lagrange multipliers

To find the maximum and minimum values of\(f(x,y,z)\)subject to the constraint \(g(x,y,z) = k\) (assuming that these extreme values exist and \(\nabla g \ne {\bf{0}}\)on the surface\(g(x,y,z) = k)\):

(a) Find all values of\(x,y,z\), and\(\lambda \)such that\(\nabla f(x,y,z) = \lambda \nabla g(x,y,z)g(x,y,z) = k\)

And

(b) Evaluate\(f\) at all the points \((x,y,z)\)that result from step (a). The largest of these values is the maximum value of\(f\); the smallest is the minimum value of\(f\).

02

Use Lagrange multiplier

Consider the function\(f(x,y,z) = {x^2} + {y^2} + {z^2}\).

Let \(g(x,y,z) = x - y\)and\(h(x,y,z) = {y^2} - {z^2}\).

By Lagrange's method of multipliers, find all \(x,y,z,\lambda \)and\(\mu \)such that

\(\nabla f(x,y,z) = \lambda \nabla g(x,y,z) + \mu \nabla h(x,y,z)\)

\(\begin{array}{c}\nabla ({x^2} + {y^2} + {z^2}) = \lambda \nabla (x - y) + \mu \nabla ({y^2} - {z^2})\\2x + 2y + 2z = \lambda (1 - 1) + \mu (2y - 2z)\end{array}\)

Comparing both sides:

\(\begin{array}{c}2x = \lambda \ldots \ldots (1)\\2y = - \lambda + 2\mu y......(2)\\2z = - 2\mu z \ldots \ldots (3)\\x - y = 1 \ldots \ldots (4)\\{y^2} - {z^2} = 1 \ldots \ldots (5)\end{array}\)

03

Solve equation

Solve equation (3).

\(\begin{array}{l}2z = - 2\mu z\\2z(1 + \mu ) = 0\\z = 0\,or\mu = - 1\end{array}\)

Put \(\mu = - 1\) in equation (2) we have:

\(\begin{array}{l}2y = - \lambda - 2y\\4y = - \lambda \\y = - \frac{\lambda }{4}\end{array}\)

04

Find value of variable

Substitute \(x = \frac{\lambda }{2},y = - \frac{\lambda }{4}\) in \(x - y = 1\).

\(\begin{array}{c}\frac{\lambda }{2} + \frac{\lambda }{4} = 1\\\frac{{2\lambda + \lambda }}{4} = 1\\\lambda = \frac{4}{3}\end{array}\)

Solving we have: \(x = \frac{2}{3},y = - \frac{1}{3}\)

But these values are not acceptable because \(y = - \frac{1}{3}\)gives imaginary value for\(z\).

05

Find value of variable

For \(z = 0\)

Substituting\(z = 0\)in equation (5) we have:

\(y = \pm 1\)

And\(y = \pm 1\) on substituting in equation (4) gives

\(x = 2,0\)

So, the points are\((2,1,0)\,\,\& \,(0, - 1,0)\).

06

Evaluate function at points

Plugging the points\((2,1,0)\) and\((0, - 1,0)\)into\(f(x,y,z)\).

\(\begin{array}{l}f(2,1,0) = 5\\f(0, - 1,0) = 1\end{array}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

Determine the set of points at which the function is continuous.

\(H\left( {x,y} \right) = \frac{{{e^x} + {e^y}}}{{{e^{xy}}{\rm{ - }}1}}\)

(a) Find the values of \(\frac{{\partial z}}{{\partial r}}\) and \(\frac{{\partial z}}{{\partial \theta }}\) if \(z = f(x,y)\), where \(x = r\cos \theta \) and \(y = r\sin \theta \).

(b) Show the equation\({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\).

Sketch the graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\)

Calculate the values of \({g_u}(0,0)\) and \({g_v}(0,0)\) using the given table of values if \(g(u,v) = f\left( {{e^u} + \sin v,{e^u} + \cos v} \right)\) where \(f\)is a differentiable function of \(x\) and \(y.\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free