Chapter 11: Q16E (page 683)
Find the extreme values of\(f\)subject to both constraints.
\(f(x,y,z) = {x^2} + {y^2} + {z^2};\;\;\;x - y = 1,\;\;\;{y^2} - {z^2} = 1\)
Short Answer
Maximum: \(f(2,1,0) = 5\)
Minimum: \(f(0 - 1,0) = 1\)
Chapter 11: Q16E (page 683)
Find the extreme values of\(f\)subject to both constraints.
\(f(x,y,z) = {x^2} + {y^2} + {z^2};\;\;\;x - y = 1,\;\;\;{y^2} - {z^2} = 1\)
Maximum: \(f(2,1,0) = 5\)
Minimum: \(f(0 - 1,0) = 1\)
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).
Determine the set of points at which the function is continuous.
\(H\left( {x,y} \right) = \frac{{{e^x} + {e^y}}}{{{e^{xy}}{\rm{ - }}1}}\)
(a) Find the values of \(\frac{{\partial z}}{{\partial r}}\) and \(\frac{{\partial z}}{{\partial \theta }}\) if \(z = f(x,y)\), where \(x = r\cos \theta \) and \(y = r\sin \theta \).
(b) Show the equation\({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\).
Sketch the graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\)
Calculate the values of \({g_u}(0,0)\) and \({g_v}(0,0)\) using the given table of values if \(g(u,v) = f\left( {{e^u} + \sin v,{e^u} + \cos v} \right)\) where \(f\)is a differentiable function of \(x\) and \(y.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.