Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a graph and/or level curves to estimate the local maximum and minimum values and saddle point(s) of the function. Then use calculus to find these values precisely.

\(f(x,y) = 3{x^2}y + {y^3} - 3{x^2} - 3{y^2} + 2\)

Short Answer

Expert verified

Local maximum point is at\((0,0)\),local minimum\((0,2)\)& saddle point is at\((0,0)\). Saddle points are\((1,1),( - 1,1)\)

Step by step solution

01

Second derivative test

Suppose the second partial derivatives of\(f\)are continuous on a disk with center\({\bf{(a,b)}}\), and suppose that\({f_x}(a,b) = 0\)and\({f_y}(a,b) = 0\). Let

\(D = D(a,b) = {f_{xx}}(a,b){f_{yy}}(a,b) - {\left( {{f_{xy}}(a,b)} \right)^2}\)

(a) If\(D > 0\)and\({f_{xx}}(a,b) > 0\), then\(f(a,b)\)is a local minimum.

(b) If\(D > 0\)and\({f_{xx}}(a,b) < 0\), then\(f(a,b)\)is a local maximum.

(c) If\(D < 0\), then\(f(a,b)\)is not a local maximum or minimum.

02

Using graph

Consider the following function\(f(x,y) = 3{x^2}y + {y^3} - 3{x^2} - 3{y^2} + 2\).

Using graphing calculator the graph is:

By graph it seems that\(f\)has a local maximum\(f(0,0) \approx 2\), and a local minimum\(f(0,2) \approx - 2\)and saddle points near\(( \pm 1,1).\)

03

Find partial derivative

Use the Calculus to find the precise values.

We have\(f(x,y) = 3{x^2}y + {y^3} - 3{x^2} - 3{y^2} + 2\)

The partial derivative of \(f(x,y)\)with respect to\(x\,\& \,y\)is given by:

\(\begin{aligned}{l}{f_x}(x,y) = 6xy - 6x\\{f_y}(x,y) = 3{y^2} - 6y\end{aligned}\)

04

Find critical point

Put\({f_x} = 0,{f_y} = 0\)to find critical points.

\(\begin{aligned}{c}{f_x}(x,y) = 0\\6xy - 6x = 0\\x = 0{\rm{ or }}y = 1\end{aligned}\)

And

\(\begin{aligned}{c}{f_y} = 0\\3{y^2} - 6y = 0\\y(3y - 6) = 0\\y = 0{\rm{ or }}y = 2\end{aligned}\)

Plugging\(y = 1\)into the equation and equating this expression to zero,

\(\begin{aligned}{c}3{x^2} + 3{(1)^2} - 6(1) = 0\\3{x^2} = 3\\x = \pm 1\end{aligned}\)

Thus, the four critical points of the function are \((0,0),(0,2),(1,1)\)and\(( - 1,1)\).

05

Find second order derivative

For\(f(x,y) = 3{x^2}y + {y^3} - 3{x^2} - 3{y^2} + 2\)

Differential two times with respect to\(x\),

\(\begin{aligned}{c}{f_x}(x,y) = 6xy - 6x\\{f_{xx}}(x,y) = 6y - 6\\{f_{xy}}(x,y) = 6x\\{f_{yy}}(x,y) = 6y - 6\end{aligned}\)

06

Calculate discriminant

The value of \(D\)is,

\(\begin{aligned}{c}D(a,b) = {f_{xx}}(a,b){f_{yy}}(a,b) - {\left( {{f_{xy}}(a,b)} \right)^2}\\D = (6y - 6)(6y - 6) - {(6x)^2}\\ = 36{(y - 1)^2} - 36{x^2}\\ = 36\left( {{{(y - 1)}^2} - {x^2}} \right)\end{aligned}\)

07

Evaluate discriminant at critical point

At the critical point\((0,0)\),

\(\begin{aligned}{c}D = 36\left( {{{(0 - 1)}^2} - {0^2}} \right)\\ = 36\end{aligned}\)

And

\(\begin{aligned}{c}{f_{xx}}(x,y) = 6y - 6\\{f_{xx}} = 6(0) - 6\\ = - 6\end{aligned}\)

Since\(D > 0\) and\({f_{xx}} < 0\), therefore the point\((0,0)\) is a local maximum.

\(\begin{aligned}{c}f(0,0) = 3{(0)^2}(0) + {(0)^3} - 3{(0)^2} - 3{(0)^2} + 2\\ = 2\end{aligned}\)

08

Evaluate discriminant at critical point

At the critical point\((0,2)\),

\(\begin{aligned}{c}D(0,2) = 36\left( {{{(2 - 1)}^2} - {0^2}} \right)\\ = 36\end{aligned}\)

And

\(\begin{aligned}{c}{f_{xx}}(x,y) = 6y - 6\\ = 6(2) - 6\\ = 6\end{aligned}\)

Since \(D > 0\)and\({f_{xx}} > 0\), therefore the point \((0,2)\)is a local minimum.

\(\begin{aligned}{c}f(0,2) = 3{(0)^2}(2) + {(2)^3} - 3{(0)^2} - 3{(2)^2} + 2\\ = 8 - 12 + 2\\ = - 2\end{aligned}\)

09

Evaluate discriminant at critical point

At the critical point\((1,1)\),

\(\begin{aligned}{c}D(1,1) = 36\left( {{{(1 - 1)}^2} - {1^2}} \right)\\ = - 36\end{aligned}\)

Since\(D < 0\), therefore the point \((1,1)\)is a saddle point.

At the critical point\(( - 1,1)\),

\(\begin{aligned}{c}D = 36\left( {{{(1 - 1)}^2} - {{( - 1)}^2}} \right)\\ = - 36\end{aligned}\)

Since\(D < 0\), therefore the point \(( - 1,1)\)is a saddle point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine the set of points at which the function is continuous.
\(f\left( {x,y,z} \right) = \sqrt {y{\rm{ - }}{x^2}} {l_n}z\)

Find h(x, y) = g(f(x, y)) and the set on which h is continuous.

\(g(t) = t + \ln t{\rm{ , }}f(x,y) = \frac{{1 - xy}}{{1 + {x^2}{y^2}}}\)

Find h(x, y) = g(f(x, y)) and the set on which h is continuous.

\(g(t) = {t^2} + \sqrt t {\rm{ , }}f(x,y) = 2x + 3y - 6\)

(a) Find the values of \(\frac{{\partial z}}{{\partial r}}\) and \(\frac{{\partial z}}{{\partial \theta }}\) if \(z = f(x,y)\), where \(x = r\cos \theta \) and \(y = r\sin \theta \).

(b) Show the equation\({\left( {\frac{{\partial z}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial z}}{{\partial y}}} \right)^2} = {\left( {\frac{{\partial z}}{{\partial r}}} \right)^2} + \frac{1}{{{r^2}}}{\left( {\frac{{\partial z}}{{\partial \theta }}} \right)^2}\).

(a) Determine the rate of change of the volume of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(b) Determine the rate of change of the surface of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

(c) Determine the rate of change of the length of a diagonal of the box whose length \(l\) increase from \(1\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\), width \(w\) increase from \(2\;{\rm{m}}/{\rm{s}}\) to \(2\;{\rm{m}}/{\rm{s}}\) and height \(h\) decrease from \(2\;{\rm{m}}/{\rm{s}}\) to \(3\;{\rm{m}}/{\rm{s}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free