Chapter 11: Q15E (page 683)
Find the extreme values of\(f\)subject to both constraints
\(f(x,y,z) = yz + xy;\;\;\;xy = 1,\;\;\;{y^2} + {z^2} = 1\)
Short Answer
Maximum & minimum value are\(\frac{3}{2}{\rm{ and }}\frac{1}{2}\)respectively.
Chapter 11: Q15E (page 683)
Find the extreme values of\(f\)subject to both constraints
\(f(x,y,z) = yz + xy;\;\;\;xy = 1,\;\;\;{y^2} + {z^2} = 1\)
Maximum & minimum value are\(\frac{3}{2}{\rm{ and }}\frac{1}{2}\)respectively.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind and sketch the domain of the function \(f(x,y) = ln(9 - {x^2} - 9{y^2})\)
Determine the derivative \({W_s}(1,0)\) and\({W_t}(1,0)\). The functions are \(z = f(x,y),x = g(t)\) and \(y = h(t){\rm{. }}\)
Find the value of \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\) using equation 7.
\({e^z} = xyz\)
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{5{y^4}co{s^2}x}}{{{x^4} + {y^4}}}\)
Determine the value of \(\frac{{dw}}{{dt}}\)using chain rule if \(w = x{e^{\frac{y}{z}}},x = {t^2},y = 1 - t\)and \(z = 1 + 2t.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.