Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the extreme values of\(f\)subject to both constraints.

\(f(x,y,z) = 3x - y - 3z;\,\,x + y - z = 0,\;\;\;{x^2} + 2{z^2} = 1\)

Short Answer

Expert verified

Maximum value is\(2\sqrt 6 \)and minimum value is\( - 2\sqrt 6 \).

Step by step solution

01

Lagrange multiplier condition

For two constraints\(\nabla f\left( {{x_0},{y_0},{z_0}} \right) = \lambda \nabla g\left( {{x_0},{y_0},{z_0}} \right) + \mu \nabla h\left( {{x_0},{y_0},{z_0}} \right)\).

02

Given data

Given function is\(f(x,y,z) = 3x - y - 3z{\rm{. }}\)

Constraints are\(g(x,y,z) = x + y - z = 0,\,\,h(x,y,z) = {x^2} + 2{z^2} = 1\)

By Lagrange's method of multipliers we find all \(x,y,z,\lambda \)and\(\mu \)such that

\(\vec \nabla f(x,y,z) = \lambda \vec \nabla g(x,y,z) + \mu \vec \nabla h(x,y,z)\)

03

Differentiate

Substituting values in\(\vec \nabla f(x,y,z) = \lambda \vec \nabla g(x,y,z) + \mu \vec \nabla h(x,y,z)\)we have:

\(\begin{array}{c}\vec \nabla (3x - y - 3z) = \lambda \vec \nabla (x + y - z) + \mu \vec \nabla h({x^2} + 2{z^2} - 1)\\3 - 1 - 3 = \lambda (1 + 1 - 1) + \mu (2x + 4z)\end{array}\)

Comparing both sides:

\(\begin{array}{l}3 = \lambda + 2\mu x\,\,\,\,\,....(1)\\ - 1 = \lambda \,\,\,...(2)\\ - 3 = - \lambda + 4\mu z\,\,\,....(3)\end{array}\)

04

Solve equation

Put\(\lambda = - 1\)into equation (1),

\(\begin{array}{l}3 = - 1 + \mu 2x\\4 = \mu 2x\\x = \frac{2}{\mu }\end{array}\)

Plugging\(\lambda = - 1\)into equation\((7)\) we have:

\(\begin{array}{l} - 3 = 1 + \mu 4z\\ - 4 = \mu 4z\\\frac{{ - 1}}{\mu } = z\end{array}\)

05

Substitution

Substitute values of\(x\,\& \,z\) in\({x^2} + 2{z^2} = 1\)we have

\(\begin{array}{c}{x^2} + 2{z^2} = 1\\{\left( {\frac{2}{\mu }} \right)^2} + 2{\left( {\frac{{ - 1}}{\mu }} \right)^2} = 1\\\frac{4}{{{\mu ^2}}} + \frac{2}{{{\mu ^2}}} = 1\\ \pm \sqrt 6 = \mu \end{array}\)

06

Find value of variables

The values of\(x\)and\(z\)at\(\mu = \sqrt 6 \)is,

\(x = \frac{2}{{\sqrt 6 }},z = - \frac{1}{{\sqrt 6 }}\)

The values of\(x\)and\(z\)at\(\mu = - \sqrt 6 \)is,

\(x = - \frac{2}{{\sqrt 6 }},z = \frac{1}{{\sqrt 6 }}\)

07

Find value of\({\bf{y}}\)

Substitute the values\(x = \frac{2}{{\sqrt 6 }}\)and\(z = - \frac{1}{{\sqrt 6 }}\)in\(x + y - z = 0\)

\(\begin{array}{c}\frac{2}{{\sqrt 6 }} + y + \frac{1}{{\sqrt 6 }} = 0\\y = - \frac{3}{{\sqrt 6 }}\end{array}\)

Substitute the values\(x = - \frac{2}{{\sqrt 6 }}\)and\(z = \frac{1}{{\sqrt 6 }}\)in\(x + y - z = 0\).

\(\begin{array}{*{20}{r}}{ - \frac{2}{{\sqrt 6 }} + y - \frac{1}{{\sqrt 6 }} = 0}\\{y = \frac{3}{{\sqrt 6 }}}\end{array}\)

08

Find maximum & minimum value

The value of\(f(x,y,z)\)at critical points is,

\(\begin{array}{c}f\left( {\frac{2}{{\sqrt 6 }},\frac{{ - 3}}{{\sqrt 6 }},\frac{{ - 1}}{{\sqrt 6 }}} \right) = 3\left( {\frac{2}{{\sqrt 6 }}} \right) - \left( {\frac{{ - 3}}{{\sqrt 6 }}} \right) - 3\left( {\frac{{ - 1}}{{\sqrt 6 }}} \right)\\ = 2\sqrt 6 \\f\left( {\frac{{ - 2}}{{\sqrt 6 }},\frac{3}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }}} \right) = 3\left( {\frac{{ - 2}}{{\sqrt 6 }}} \right) - \left( {\frac{3}{{\sqrt 6 }}} \right) - 3\left( {\frac{1}{{\sqrt 6 }}} \right)\\ = - 2\sqrt 6 ({\rm{Minimum}})\end{array}\)

Hence, the minimum for the function is\( - 2\sqrt 6 \)and the maximum of the function is\(2\sqrt 6 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free