Chapter 11: Q13E (page 683)
Find the extreme values of\(f\)subject to both constraints.
\(f(x,y,z) = x + 2y;\;\;\;x + y + z = 1,\;\;\;{y^2} + {z^2} = 4\)
Short Answer
Maximum value is\(1 + 2\sqrt 2 \)& minimum value is\(1 - 2\sqrt 2 \).
Chapter 11: Q13E (page 683)
Find the extreme values of\(f\)subject to both constraints.
\(f(x,y,z) = x + 2y;\;\;\;x + y + z = 1,\;\;\;{y^2} + {z^2} = 4\)
Maximum value is\(1 + 2\sqrt 2 \)& minimum value is\(1 - 2\sqrt 2 \).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{xy + y{z^2} + x{z^2}}}{{{x^2} + {y^2} + {z^2}}}\)
Find the value of \(\frac{{\partial N}}{{\partial u}},\frac{{\partial N}}{{\partial v}}\) and \(\frac{{\partial N}}{{\partial w}}\) using chain rule if \(N = \frac{{p + q}}{{p + r}},p = u + vw,q = v + uw\) and \(r = w + uv\) when \(u = 2,v = 3\) and\(w = 4\).
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2}y{e^y}}}{{{x^4} + 4{y^2}}}\)
Determine the derivative\(\frac{{dz}}{{dt}}\) with the help of the chain rule. The functions are\(z = {x^2} + {y^2} + xy,x = \sin t\) and\(y = {e^t}{\rm{. }}\)
Find and sketch the domain of the function \(f(x,y) = \sqrt y + \sqrt {25 - {x^2} - {y^2}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.