Chapter 11: Q12E (page 683)
\({\bf{1}} - {\bf{12}}\)Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.
\(f\left( {{x_1},{x_2}, \ldots ,{x_n}} \right) = {x_1} + {x_2} + \cdots + {x_n};\,\,\,\,x_1^2 + x_2^2 + \cdots + x_n^2 = 1\)
Short Answer
Maximum value is\(f\left( {\frac{1}{{\sqrt n }},\frac{1}{{\sqrt n }}, \ldots \ldots ,\frac{1}{{\sqrt n }}} \right) = \sqrt n \)and minimum value is\(f\left( { - \frac{1}{{\sqrt n }},\frac{{ - 1}}{{\sqrt n }}, \ldots \ldots \ldots ,\frac{{ - 1}}{{\sqrt n }}} \right) = - \sqrt n \).