Chapter 11: Q11E (page 623)
Let \(g(x,y) = \cos (x + 2y)\)
- Evaluate \(g(2, - 1)\)
- Find the domain of g
- Find the e range of g
Short Answer
a) The g(2,-1) = 1
b) The domain function of g(x,y) is entire plane (R2)
c) The range of g(-1,1)
Chapter 11: Q11E (page 623)
Let \(g(x,y) = \cos (x + 2y)\)
a) The g(2,-1) = 1
b) The domain function of g(x,y) is entire plane (R2)
c) The range of g(-1,1)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the values of \(\frac{{\partial z}}{{\partial s}}\)and \(\frac{{\partial z}}{{\partial t}}\) using chain rule if \(z = {e^r}\cos \theta ,r = st\) and \(\theta = \sqrt {{s^2} + {t^2}} {\rm{. }}\)
Use a computer graph of the function to explain why the limit does not exist.
\(\mathop {\lim }\limits_{(x,y) \to (0,0)} \frac{{x{y^3}}}{{{x^2} + {y^6}}}\)
Let f(x,y,z) = \(\sqrt x + \sqrt y + \sqrt z + ln(4 - {x^2} - {y^2} - {z^2})\)
a) Evaluate f(1,1,1)
b) Find and describe the domain of f.
Find an equation of the tangent plane to the given surface at the specified point..
\(z = 3{y^2} - 2{x^2} + x,(2, - 1, - 3)\)..
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^4} - {y^4}}}{{{x^2} + {y^2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.