Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\({\bf{1}} - {\bf{12}}\) Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

\(\;f(x,y,z) = {x^4} + {y^4} + {z^4};\;\;\;{x^2} + {y^2} + {z^2} = 1\)

Short Answer

Expert verified

Maximum value is\(1\)and minimum value is\(\frac{1}{3}\).

Step by step solution

01

Method of Lagrange multipliers

To find the maximum and minimum values of\(f(x,y,z)\)subject to the constraint\(g(x,y,z) = k\)(assuming that these extreme values exist and\(\nabla g \ne {\bf{0}}\)on the surface\(g(x,y,z) = k)\):

(a) Find all values of\(x,y,z\), and\(\lambda \)such that\(\nabla f(x,y,z) = \lambda \nabla g(x,y,z)g(x,y,z) = k\)

(b) Evaluate\(f\)at all the points\((x,y,z)\)that result from step (a). The largest of these values is the maximum value of\(f\); the smallest is the minimum value of\(f\).

02

Evaluate\(\nabla f = \lambda \nabla g\)

Given \(f(x,y,z) = {x^4} + {y^4} + {z^4};\;\;g(x,y,z):\;{x^2} + {y^2} + {z^2} - 1 = 0\)

\(\nabla f = \lambda \nabla g\)

\(\begin{array}{l} \Rightarrow \nabla \left( {{x^4} + {y^4} + {z^4}} \right) = \lambda \nabla \left( {{x^2} + {y^2} + {z^2} - 1} \right)\\ \Rightarrow 4{x^3} + 4{y^3} + 4{z^3} = \lambda \left( {2x + 2y + 2z} \right)\end{array}\)

Comparing both sides:

\(\begin{array}{l}4{x^3} = 2\lambda x\,\,\, - - - (1)\\4{y^3} = 2\lambda y\,\, - - - (2)\\4{z^3} = 2\lambda z\,\,\, - - - (3)\end{array}\)

03

Solve equation

By equation (1) we have

\(\begin{array}{l}4{x^3} = \lambda 2x\\2{x^3} = \lambda x\\x\left( {2{x^2} - \lambda } \right) = 0\\x = 0{\rm{ or }}\lambda = 2{x^2}\,\,\,\,\,.....(4)\end{array}\)

By equation (2) we have

\(y = 0{\rm{ or }}\lambda = 2{y^2}\,\,\,\,.....(5)\)

Similarly, solve the equation (3)

\(z = 0{\rm{ or }}\lambda = 2{z^2}\,\,\,.....(6)\)

04

Find critical point

By equation (4), (5) & (6) we have:

\(\begin{array}{l}2{x^2} = 2{y^2} = 2{z^2}\\{x^2} = {y^2} = {z^2}\end{array}\)

Substitute in equation\({x^2} + {y^2} + {z^2} - 1 = 0\)we have:

\(\begin{array}{c}{x^2} + {y^2} + {z^2} = 1\\3{x^2} = 1\\x = \pm \frac{1}{{\sqrt 3 }}\end{array}\)

The possible points are\(\left( { \pm \frac{1}{{\sqrt 3 }}, \pm \frac{1}{{\sqrt 3 }}, \pm \frac{1}{{\sqrt 3 }}} \right)\)

05

Find critical points

Consider\(x = 0,y = 0\)

\(\begin{array}{c}{(0)^2} + {(0)^2} + {(z)^2} = 1\\z = \pm 1\end{array}\)

The possible points are\((0,0, \pm 1)\).

Similarly, the possible points are\(( \pm 1,0,0)\)and\((0, \pm 1,0)\).

06

Find critical point

For\(x = 0\)and\(\lambda = 2{y^2} = 2{z^2}\)in\({x^2} + {y^2} + {z^2} - 1 = 0\)we have:

\(\lambda = 1\)

From (5) & (6), \(2{y^2} = 2{z^2} = 1\)

Possible points are\(\left( {0, \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }}} \right)\).

07

Find critical point

Put\(y = 0,z = 0\), the possible points are\(\left( { \pm \frac{1}{{\sqrt 2 }},0, \pm \frac{1}{{\sqrt 2 }}} \right),\left( { \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }},0} \right)\).

Therefore, all the possible points are:

\(\begin{array}{l}\left( { \pm \frac{1}{{\sqrt 3 }}, \pm \frac{1}{{\sqrt 3 }}, \pm \frac{1}{{\sqrt 3 }}} \right),(0,0, \pm 1),( \pm 1,0,0),(0, \pm 1,0),\\\left( {0, \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }}} \right),\left( { \pm \frac{1}{{\sqrt 2 }},0, \pm \frac{1}{{\sqrt 2 }}} \right),\left( { \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }},0} \right)\end{array}\).

08

Evaluate function at critical points

At \(\left( { \pm \frac{1}{{\sqrt 3 }}, \pm \frac{1}{{\sqrt 3 }}, \pm \frac{1}{{\sqrt 3 }}} \right)\)

\(\begin{array}{c}f(x,y,z) = {\left( { \pm \frac{1}{{\sqrt 3 }}} \right)^4} + {\left( { \pm \frac{1}{{\sqrt 3 }}} \right)^4} + {\left( { \pm \frac{1}{{\sqrt 3 }}} \right)^4}\\ = \frac{1}{9} + \frac{1}{9} + \frac{1}{9}\\ = \frac{1}{3}\end{array}\)

09

Evaluate function at critical points

The function value at the points\((0,0, \pm 1),( \pm 1,0,0)\)and\((0, \pm 1,0)\)is,

\(\begin{array}{l}f( \pm 1,0,0) = 1\\f(0, \pm 1,0) = 1\\f(0,0, \pm 1) = 1\end{array}\)

The function value at the points\(\left( {0, \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }}} \right),\left( { \pm \frac{1}{{\sqrt 2 }},0, \pm \frac{1}{{\sqrt 2 }}} \right),\left( { \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }},0} \right)\)is,

\(\begin{array}{c}f\left( {0, \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }}} \right) = \frac{1}{4} + \frac{1}{4}\\ = \frac{1}{2}\end{array}\)

\(f\left( { \pm \frac{1}{{\sqrt 2 }},0, \pm \frac{1}{{\sqrt 2 }}} \right) = \frac{1}{2}\)

\(f\left( { \pm \frac{1}{{\sqrt 2 }}, \pm \frac{1}{{\sqrt 2 }},0} \right) = \frac{1}{2}\)

Therefore, the maximum value of the function is\(1\)and the minimum value is\(\frac{1}{3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free