Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write a polar equation of a conic with the focus at the origin and the given data.

\({\rm{Hyperbola, eccentricity 3, directrix}}\)\({\rm{r = - 6csc\theta }}\)

Short Answer

Expert verified

The polar equation is \({\rm{ = }}\frac{{{\rm{18}}}}{{{\rm{1 - 3sin\theta }}}}\).

Step by step solution

01

Hyperbola and directrix.

Hyperbola e=3

Directrix\({\rm{r = - 6csc\theta }}\)

\(\begin{aligned}{l}{\rm{r = }}\frac{{{\rm{ed}}}}{{{\rm{1 \pm ecos\theta }}}}{\rm{,}}\;\;\\{\rm{r = }}\frac{{{\rm{ed}}}}{{{\rm{1 \pm esin\theta }}}}\end{aligned}\)

\(\begin{aligned}{c}{\rm{r = - 6csc\theta }}\\ \Rightarrow {\rm{r}}\\{\rm{ = - }}\frac{{\rm{6}}}{{{\rm{sin\theta }}}}\\ \Rightarrow {\rm{rsin\theta }}\\{\rm{ = - 6}}\end{aligned}\)

02

Directrix and polar equation.

Hence,

\({\rm{y = rsin\theta }}\)

\({\rm{y = - 6}}\)

Directrix is parallel to the polar axis and it is below the pole. And d= 6.

03

Polar equation formula.

\({\rm{r = }}\frac{{{\rm{ed}}}}{{{\rm{1 - esin\theta }}}}\)

Then,

\(\begin{aligned}{c}{\rm{r = }}\frac{{{\rm{3}} \cdot {\rm{6}}}}{{{\rm{1 - 3sin\theta }}}}\\{\rm{ = }}\frac{{{\rm{18}}}}{{{\rm{1 - 3sin\theta }}}}\end{aligned}\)

Then the polar equation is \({\rm{ = }}\frac{{{\rm{18}}}}{{{\rm{1 - 3sin\theta }}}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free