Chapter 9: Q8E (page 522)
Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
\(0 \le r < 2,\;\;\;{\rm{\pi }} \le {\rm{\theta }} \le \frac{{{\rm{3\pi }}}}{{\rm{2}}}\)
Chapter 9: Q8E (page 522)
Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
\(0 \le r < 2,\;\;\;{\rm{\pi }} \le {\rm{\theta }} \le \frac{{{\rm{3\pi }}}}{{\rm{2}}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe Cartesian coordinates of a point are given.
(i) Find polar coordinates\({\rm{(r,\theta )}}\) of the point, where\({\rm{r > 0}}\) and\({\rm{0}} \le {\rm{\theta < 2\pi }}\).
(ii) Find polar coordinates\({\rm{(r,\theta )}}\) of the point, where\({\rm{r < 0}}\) and\({\rm{0}} \le {\rm{\theta < 2\pi }}\).
\(\begin{aligned}{l}{\rm{(a)}}\left( {{\rm{3}}\sqrt {\rm{3}} {\rm{,3}}} \right)\\{\rm{(b)}}\left( {{\rm{1, - 2}}} \right)\end{aligned}\)
Find the area of the region that lies inside the first curve and outside the second curve.
\({\rm{r = 3cos\theta ,}}\;\;\;{\rm{r = 1 + cos\theta }}\).
Sketch the curve \({\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \right)^{\rm{3}}}{\rm{ = 4}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{. }}\)
Sketch the curve and find the area that it encloses.
\({\rm{r = 2sin\theta }}\)
Sketch the curve with the given polar equation by
first sketching the graph of \({\rm{r}}\) as a function of \({\rm{\theta }}\) in Cartesian
coordinates. \({{\rm{r}}^{\rm{2}}}{\rm{\theta = 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.