Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the area of the shaded region.

Short Answer

Expert verified

The area of the shaded region is\(\frac{{\rm{3}}}{{\rm{4}}}{\rm{\pi }}\).

Step by step solution

01

Find the area of the shaded region.

To begin, calculate the area swept out by a beam using the formula below. Put the function in place of\({\rm{r}}\). Remove the constant multiple and calculate the square of\({\rm{1 + cos\theta }}\). Because integrating \({\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta }}\)is difficult, use a double-angle formula to convert it to\(\frac{{{\rm{1 + cos2\theta }}}}{{\rm{2}}}\). To obtain the integral of the phrase, simplify it even further. Remember that the total of the integrals of each term equals the integral of the sum.

It's worth noting that you're just looking for the area of the right half of the form, that is, the part of the shape that is swept out from angle \({\rm{0}}\)to angle\({\rm{\pi }}\).

02

Result.

As a result, use the formula:

\(\begin{}{c}\int_{\rm{0}}^{\rm{\pi }} {\frac{{\rm{1}}}{{\rm{2}}}} {{\rm{r}}^{\rm{2}}}{\rm{d\theta = }}\int_{\rm{0}}^{\rm{\pi }} {\frac{{\rm{1}}}{{\rm{2}}}} {{\rm{(1 + cos\theta )}}^{\rm{2}}}{\rm{d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{\pi }} {{{{\rm{(1 + cos\theta )}}}^{\rm{2}}}} {\rm{d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{\pi }} {\left( {{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta + 2cos\theta + 1}}} \right)} {\rm{d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{\pi }} {\left( {\frac{{{\rm{1 + cos2\theta }}}}{{\rm{2}}}{\rm{ + 2cos\theta + 1}}} \right)} {\rm{d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{\pi }} {\left( {\frac{{{\rm{cos2\theta }}}}{{\rm{2}}}{\rm{ + 2cos\theta + }}\frac{{\rm{3}}}{{\rm{2}}}} \right)} {\rm{d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{\rm{sin2\theta }}}}{{\rm{4}}}{\rm{ + 2sin\theta + }}\frac{{\rm{3}}}{{\rm{2}}}{\rm{\theta }}} \right)_{\rm{0}}^{\rm{\pi }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{3}}}{{\rm{2}}}{\rm{\pi - 0}}} \right)\\{\rm{ = }}\left( {\frac{{\rm{3}}}{{\rm{4}}}{\rm{\pi }}} \right)\end{}\)

Therefore, the area of the shaded region is\(\frac{{\rm{3}}}{{\rm{4}}}{\rm{\pi }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free