For this question, we can compute from the function of x:
\(\begin{array}{l}x = {\sin ^3}\theta \\\frac{{dx}}{{d\theta }} = 3{\sin ^2}\theta \cos \theta \end{array}\)
For this question, we can compute from the function of y:
\(\begin{array}{l}y = {\cos ^3}\theta \\\frac{{dy}}{{d\theta }} = - 3{\cos ^2}\theta \sin \theta \end{array}\)
By using the chain rule we can write,
\(\begin{array}{l}\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{d\theta }}}}{{\frac{{dx}}{{d\theta }}}}\\\frac{{dy}}{{dx}} = \frac{{ - 3{{\cos }^2}\theta \sin \theta }}{{3{{\sin }^2}\theta \cos \theta }}\\\frac{{dy}}{{dx}} = \frac{{ - \cos \theta }}{{\sin \theta }}\\\frac{{dy}}{{dx}} = - \cot \theta \end{array}\)