Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To show the tangent of the angle \((\psi )\) between the tangent line and radial line is the ratio of the radial distance \((r)\) and its angular derivative \(\left( {\frac{{dr}}{{d\theta }}} \right)\).

Short Answer

Expert verified

It is proved that \(\tan \psi = \frac{r}{{\frac{d}{{do}}}}\).

Step by step solution

01

Given data

The angle between the tangent line of the curve \(r = f(\theta )\) and the radial line \(OP\) at the point \(P\) is \(\psi \) and \(\psi = f - \theta \).

02

Concept of Tangent line equation

The equation of the tangent line can be found by the use of the formula\({\bf{y}}{\rm{ }}--{\rm{ }}{{\bf{y}}_{\bf{1}}}\; = {\bf{m}}{\rm{ }}\left( {{\bf{x}}{\rm{ }}--{\rm{ }}{{\bf{x}}_{\bf{1}}}} \right)\)where m is the slope and\(({x_1}\;,{\rm{ }}{y_1})\)is the coordinate points of the line.

03

Calculation for the function \(\tan (f - \theta )\)

Substitute \(\psi = f - \theta \) in \(\tan \psi \) as \(\tan \psi = \tan (f - \theta )\).

Apply formula \(\left( {\tan (A - B) = \frac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right)\) in the above equation.

\(\tan (f - \theta ) = \frac{{\tan f - \tan \theta }}{{1 + \tan f\tan \theta }}\) …… (1)

Take slope of the tangent line for the curve \(r = f(\theta )\) as \(\tan f = \frac{{dy}}{{dx}}\).

The chain rule for \(\frac{{dy}}{{dx}}\) is, \(\frac{{dy}}{{dx}} = \frac{{\left( {\frac{{dy}}{{dy}}} \right)}}{{\left( {\frac{{dx}}{{dy}}} \right)}}\).

Substitute \(\tan f = \frac{{dy}}{{dx}}\) in the above equation.

\(\tan f = \frac{{\left( {\frac{{dy}}{{d\underline {xy} }}} \right)}}{{\left( {\frac{{dx}}{{dy}}} \right)}}\)

Substitute \(\tan f\) in equation (1).

\(\tan (f - \theta ) = \frac{{\left( {\frac{{\left( {\frac{{dy}}{{d\theta }}} \right)}}{{\left( {\frac{{dx}}{{d\theta }}} \right)}} - \tan \theta } \right)}}{{\left( {1 + \frac{{\left( {\frac{{dy}}{{dv}}} \right)}}{{\left( {\frac{{dx}}{{dy}}} \right)}}\tan \theta } \right)}}\)

04

Calculation for the polar equations

Multiply \(\left( {\frac{{dx}}{{d\theta }}} \right)\) in above equation at numerator and denominator.

\(\tan (f - \theta ) = \frac{{\frac{{dx}}{{dy}}\left( {\frac{{\left( {\frac{{dy}}{{di}}} \right)}}{{\left( {\frac{{dx}}{{di}} - \tan \theta } \right)}}} \right.}}{{\frac{{dx}}{{dy}}\left( {1 + \frac{{\left( {\frac{{dy}}{{d\theta }}} \right)}}{{\left( {\frac{{dx}}{{d\theta }}} \right)}}\tan \theta } \right)}}\)

\(\tan (f - \theta ) = \frac{{\left( {\frac{{dy}}{{dy}}} \right) - \left( {\frac{{dx}}{{dy}}} \right)\tan \theta }}{{\left( {\frac{{dx}}{{dy}}} \right) + \left( {\frac{{dy}}{{dy}}} \right)\tan \theta }}\) …… (2)

The polar equation for the coordinate \(x\) is as, \(x = r\cos \theta \). …… (3)

The polar equation for the coordinate \(y\) is as, \(y = r\sin \theta \). …… (4)

Differentiate the equation (3) with respect to \(\theta \).

\(\begin{aligned}{l}\frac{{dx}}{{d\theta }} = - r(\sin \theta ) + \left( {\frac{{dr}}{{d\theta }}} \right)\cos \theta \\\frac{{dx}}{{d\theta }} = \left( {\frac{{dr}}{{dA}}} \right)\cos \theta - r\sin \theta \end{aligned}\)

Differentiate the equation (4) with respect to \(\theta \).

\(\begin{aligned}{l}\frac{{dy}}{{d\theta }} &= r\cos \theta + \frac{{dr}}{{d\theta }}\sin \theta \\\frac{{dy}}{{d\theta }} &= \frac{{dr}}{{d\theta }}\sin \theta + r\cos \theta \end{aligned}\)

Substitute \(\left( {\frac{{dr}}{{d\theta }}\cos \theta - r\sin \theta } \right)\) for \(\left( {\frac{{dx}}{{d\theta }}} \right)\) and \(\left( {\frac{{dr}}{{d\theta }}\sin \theta + r\cos \theta } \right)\) for \(\left( {\frac{{dy}}{{d\theta }}} \right)\) in equation (2).

\(\begin{aligned}{l}\tan (f - \theta ) &= \frac{{\left( {\frac{{d\theta }}{{d\theta }}\sin \theta + r\cos \theta } \right) - \left( {\frac{{dr}}{{d\theta }}\cos \theta - r\sin \theta } \right)\tan \theta }}{{\left( {\frac{{dr}}{{d\theta }}\cos \theta - r\sin \theta } \right) + \left( {\frac{{dr}}{{d\theta }}\sin \theta + r\cos \theta } \right)\tan \theta }}\\\tan (f - \theta ) &= \frac{{\frac{d}{d}\sin \theta + r\cos \theta - \frac{{dr}}{{d\theta }}\cos \theta \tan \theta + r\sin \theta \tan \theta }}{{\frac{d}{{dx}}\cos \theta - r\sin \theta + \frac{{dr}}{{d\theta }}\sin \theta \tan \theta + r\cos \theta \tan \theta }}\end{aligned}\)

05

Calculation for the function \(\tan \psi \)

Substitute \(\left( {\frac{{\sin \theta }}{{\cos \theta }}} \right)\) for \((\tan \theta )\) in above equation.

\(\begin{aligned}{l}\tan (f - \theta ) &= \frac{{\frac{{dr}}{{di}}\sin \theta + r\cos \theta - \frac{d}{d}\cos \theta \frac{{\sin \theta }}{{\cos \theta }} + r\sin \theta \frac{{\sin \theta }}{{\cos \theta }}}}{{\frac{d}{{d\theta }}\cos \theta - r\sin \theta + \frac{d}{d}\sin \theta \frac{{\sin \theta }}{{\cos \theta }} + r\cos \theta \frac{{\sin \theta }}{{\cos \theta }}}}\\\tan (f - \theta ) &= \frac{{\frac{d}{{di}}\sin \theta + r\cos \theta - \frac{{dr}}{{d\theta }}\sin \theta + r\frac{{{{\sin }^2}\theta }}{{\cos \theta }}}}{{\frac{d}{{di}}\cos \theta - r\sin \theta + \frac{{dr}}{{dy}}\frac{{\sin {r^2}\theta }}{{{{\cos }^2}\theta }} + r\sin \theta }}\\\tan (f - \theta ) &= \frac{{r\cos \theta + r\frac{{{{\sin }^2}\theta }}{{{{{\mathop{\rm cis}\nolimits} }^\theta }\theta }}}}{{\frac{{{\mathop{\rm dr}\nolimits} }}{{{\mathop{\rm din}\nolimits} }}\cos \theta + \frac{{\sin 2\theta }}{{\cos \theta }}}}\\\tan (f - \theta ) &= \frac{{r{{\cos }^2}\theta + r{{\sin }^2}\theta }}{{\frac{{dr}}{{di}}{{\cos }^2}\theta + \frac{{d{s^2}{{\sin }^2}\theta }}{{di}}}}\end{aligned}\)

Simplify further as shown below.

\(\begin{aligned}{l}\tan (f - \theta ) &= \frac{{r\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\frac{{dr}}{{d\theta }}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}\\\tan (f - \theta ) &= \frac{r}{{\frac{{dr}}{{d\theta }}}}\end{aligned}\)

Substitute \(\psi \) for \(f - \theta \) in above equation.

\(\tan \psi = \frac{r}{{\frac{{dr}}{{d\theta }}}}\)

Hence, it is proved that \(\tan \psi = \frac{r}{{\frac{{dr}}{{dv}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free