Chapter 9: Q67E (page 524)
To show the tangent of the angle \((\psi )\) between the tangent line and radial line is the ratio of the radial distance \((r)\) and its angular derivative \(\left( {\frac{{dr}}{{d\theta }}} \right)\).
Short Answer
It is proved that \(\tan \psi = \frac{r}{{\frac{d}{{do}}}}\).
Step by step solution
Given data
The angle between the tangent line of the curve \(r = f(\theta )\) and the radial line \(OP\) at the point \(P\) is \(\psi \) and \(\psi = f - \theta \).
Concept of Tangent line equation
The equation of the tangent line can be found by the use of the formula\({\bf{y}}{\rm{ }}--{\rm{ }}{{\bf{y}}_{\bf{1}}}\; = {\bf{m}}{\rm{ }}\left( {{\bf{x}}{\rm{ }}--{\rm{ }}{{\bf{x}}_{\bf{1}}}} \right)\)where m is the slope and\(({x_1}\;,{\rm{ }}{y_1})\)is the coordinate points of the line.
Calculation for the function \(\tan (f - \theta )\)
Substitute \(\psi = f - \theta \) in \(\tan \psi \) as \(\tan \psi = \tan (f - \theta )\).
Apply formula \(\left( {\tan (A - B) = \frac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right)\) in the above equation.
\(\tan (f - \theta ) = \frac{{\tan f - \tan \theta }}{{1 + \tan f\tan \theta }}\) …… (1)
Take slope of the tangent line for the curve \(r = f(\theta )\) as \(\tan f = \frac{{dy}}{{dx}}\).
The chain rule for \(\frac{{dy}}{{dx}}\) is, \(\frac{{dy}}{{dx}} = \frac{{\left( {\frac{{dy}}{{dy}}} \right)}}{{\left( {\frac{{dx}}{{dy}}} \right)}}\).
Substitute \(\tan f = \frac{{dy}}{{dx}}\) in the above equation.
\(\tan f = \frac{{\left( {\frac{{dy}}{{d\underline {xy} }}} \right)}}{{\left( {\frac{{dx}}{{dy}}} \right)}}\)
Substitute \(\tan f\) in equation (1).
\(\tan (f - \theta ) = \frac{{\left( {\frac{{\left( {\frac{{dy}}{{d\theta }}} \right)}}{{\left( {\frac{{dx}}{{d\theta }}} \right)}} - \tan \theta } \right)}}{{\left( {1 + \frac{{\left( {\frac{{dy}}{{dv}}} \right)}}{{\left( {\frac{{dx}}{{dy}}} \right)}}\tan \theta } \right)}}\)
Calculation for the polar equations
Multiply \(\left( {\frac{{dx}}{{d\theta }}} \right)\) in above equation at numerator and denominator.
\(\tan (f - \theta ) = \frac{{\frac{{dx}}{{dy}}\left( {\frac{{\left( {\frac{{dy}}{{di}}} \right)}}{{\left( {\frac{{dx}}{{di}} - \tan \theta } \right)}}} \right.}}{{\frac{{dx}}{{dy}}\left( {1 + \frac{{\left( {\frac{{dy}}{{d\theta }}} \right)}}{{\left( {\frac{{dx}}{{d\theta }}} \right)}}\tan \theta } \right)}}\)
\(\tan (f - \theta ) = \frac{{\left( {\frac{{dy}}{{dy}}} \right) - \left( {\frac{{dx}}{{dy}}} \right)\tan \theta }}{{\left( {\frac{{dx}}{{dy}}} \right) + \left( {\frac{{dy}}{{dy}}} \right)\tan \theta }}\) …… (2)
The polar equation for the coordinate \(x\) is as, \(x = r\cos \theta \). …… (3)
The polar equation for the coordinate \(y\) is as, \(y = r\sin \theta \). …… (4)
Differentiate the equation (3) with respect to \(\theta \).
\(\begin{aligned}{l}\frac{{dx}}{{d\theta }} = - r(\sin \theta ) + \left( {\frac{{dr}}{{d\theta }}} \right)\cos \theta \\\frac{{dx}}{{d\theta }} = \left( {\frac{{dr}}{{dA}}} \right)\cos \theta - r\sin \theta \end{aligned}\)
Differentiate the equation (4) with respect to \(\theta \).
\(\begin{aligned}{l}\frac{{dy}}{{d\theta }} &= r\cos \theta + \frac{{dr}}{{d\theta }}\sin \theta \\\frac{{dy}}{{d\theta }} &= \frac{{dr}}{{d\theta }}\sin \theta + r\cos \theta \end{aligned}\)
Substitute \(\left( {\frac{{dr}}{{d\theta }}\cos \theta - r\sin \theta } \right)\) for \(\left( {\frac{{dx}}{{d\theta }}} \right)\) and \(\left( {\frac{{dr}}{{d\theta }}\sin \theta + r\cos \theta } \right)\) for \(\left( {\frac{{dy}}{{d\theta }}} \right)\) in equation (2).
\(\begin{aligned}{l}\tan (f - \theta ) &= \frac{{\left( {\frac{{d\theta }}{{d\theta }}\sin \theta + r\cos \theta } \right) - \left( {\frac{{dr}}{{d\theta }}\cos \theta - r\sin \theta } \right)\tan \theta }}{{\left( {\frac{{dr}}{{d\theta }}\cos \theta - r\sin \theta } \right) + \left( {\frac{{dr}}{{d\theta }}\sin \theta + r\cos \theta } \right)\tan \theta }}\\\tan (f - \theta ) &= \frac{{\frac{d}{d}\sin \theta + r\cos \theta - \frac{{dr}}{{d\theta }}\cos \theta \tan \theta + r\sin \theta \tan \theta }}{{\frac{d}{{dx}}\cos \theta - r\sin \theta + \frac{{dr}}{{d\theta }}\sin \theta \tan \theta + r\cos \theta \tan \theta }}\end{aligned}\)
Calculation for the function \(\tan \psi \)
Substitute \(\left( {\frac{{\sin \theta }}{{\cos \theta }}} \right)\) for \((\tan \theta )\) in above equation.
\(\begin{aligned}{l}\tan (f - \theta ) &= \frac{{\frac{{dr}}{{di}}\sin \theta + r\cos \theta - \frac{d}{d}\cos \theta \frac{{\sin \theta }}{{\cos \theta }} + r\sin \theta \frac{{\sin \theta }}{{\cos \theta }}}}{{\frac{d}{{d\theta }}\cos \theta - r\sin \theta + \frac{d}{d}\sin \theta \frac{{\sin \theta }}{{\cos \theta }} + r\cos \theta \frac{{\sin \theta }}{{\cos \theta }}}}\\\tan (f - \theta ) &= \frac{{\frac{d}{{di}}\sin \theta + r\cos \theta - \frac{{dr}}{{d\theta }}\sin \theta + r\frac{{{{\sin }^2}\theta }}{{\cos \theta }}}}{{\frac{d}{{di}}\cos \theta - r\sin \theta + \frac{{dr}}{{dy}}\frac{{\sin {r^2}\theta }}{{{{\cos }^2}\theta }} + r\sin \theta }}\\\tan (f - \theta ) &= \frac{{r\cos \theta + r\frac{{{{\sin }^2}\theta }}{{{{{\mathop{\rm cis}\nolimits} }^\theta }\theta }}}}{{\frac{{{\mathop{\rm dr}\nolimits} }}{{{\mathop{\rm din}\nolimits} }}\cos \theta + \frac{{\sin 2\theta }}{{\cos \theta }}}}\\\tan (f - \theta ) &= \frac{{r{{\cos }^2}\theta + r{{\sin }^2}\theta }}{{\frac{{dr}}{{di}}{{\cos }^2}\theta + \frac{{d{s^2}{{\sin }^2}\theta }}{{di}}}}\end{aligned}\)
Simplify further as shown below.
\(\begin{aligned}{l}\tan (f - \theta ) &= \frac{{r\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\frac{{dr}}{{d\theta }}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}\\\tan (f - \theta ) &= \frac{r}{{\frac{{dr}}{{d\theta }}}}\end{aligned}\)
Substitute \(\psi \) for \(f - \theta \) in above equation.
\(\tan \psi = \frac{r}{{\frac{{dr}}{{d\theta }}}}\)
Hence, it is proved that \(\tan \psi = \frac{r}{{\frac{{dr}}{{dv}}}}\).
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!