Putting the values of \(\cos \theta \) and \(\sin \theta \) in equation(1)
We have\(r = \frac{{ay}}{r} + \frac{{bx}}{r}\)
\( \Rightarrow {r^2} = ay + bx\)
Since\({r^2} = {x^2} + {y^2}\), then
\( \Rightarrow {x^2} - bx + {y^2} - ay = 0\)
\( \Rightarrow {x^2} - bx + \frac{{{b^2}}}{4} - \frac{{{b^2}}}{4} + {y^2} - ay + \frac{{{a^2}}}{4} - \frac{{{a^2}}}{4} = 0\)(making perfect squares)
\( \Rightarrow {\left( {x - \frac{b}{2}} \right)^2} + {\left( {y - \frac{a}{2}} \right)^2} - \frac{{{b^2}}}{4} - \frac{{{a^2}}}{4} = 0\)
\( \Rightarrow {\left( {x - \frac{b}{2}} \right)^2} + {\left( {y - \frac{a}{2}} \right)^2} = \frac{{{b^2} + {a^2}}}{4}\)
\({\left( {x - \frac{b}{2}} \right)^2} + {\left( {y - \frac{a}{2}} \right)^2} = \frac{{{b^2} + {a^2}}}{4}\) Represents a circle