Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the slope of the tangent line to the given polar curve at the point specified by the value of \({\rm{\theta }}\)

\({\rm{r = 2 - sin\theta ,\theta = }}\frac{{\rm{\pi }}}{{\rm{3}}}\)

Short Answer

Expert verified

The slope of tangent line is\(\frac{{{\rm{2 - }}\sqrt {\rm{3}} }}{{{\rm{1 - 2}}\sqrt {\rm{3}} }}\).

Step by step solution

01

Expand slope of tangent line.

\({\rm{r = 2 - sin\theta }}\;\;\;{\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{3}}}\)

The slope of the tangent line

\(\begin{aligned}{c}{\rm{ = }}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\\{\rm{ = }}\frac{{\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}}{\rm{sin\theta + rcos\theta }}}}{{\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}}{\rm{cos\theta - rsin\theta }}}}\\\frac{{{\rm{dy}}}}{{{\rm{dx}}}}{\rm{ = }}\frac{{{\rm{ - cos\theta sin\theta + (2 - sin\theta )cos\theta }}}}{{{\rm{ - cos\theta cos\theta - (2 - sin\theta )sin\theta }}}}\end{aligned}\)

02

Find the slope of tangent at point\({\rm{\theta  = }}\frac{{\rm{\pi }}}{{\rm{3}}}\).

The slope of the tangent at the point where\({\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{3}}}\)

\(\begin{aligned}{c}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}{\rm{ = }}\frac{{{\rm{ - cos(\pi /3)sin(\pi /3) + (2 - sin(\pi /3))cos(\pi /3)}}}}{{{\rm{ - cos(\pi /3)cos(\pi /3) - (2 - sin(\pi /3))sin(\pi /3)}}}}\\{\rm{ = }}\frac{{{\rm{2 - }}\sqrt {\rm{3}} }}{{{\rm{1 - 2}}\sqrt {\rm{3}} }}\end{aligned}\)

Therefore, the slope of the tangent line is\(\frac{{{\rm{2 - }}\sqrt {\rm{3}} }}{{{\rm{1 - 2}}\sqrt {\rm{3}} }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free