Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the slope of the tangent line to the given polar curve at the point specified by the value of \({\rm{\theta }}\). \({\rm{r = 2sin\theta ,}}\;\;\;{\rm{\theta = }}\pi {\rm{/6}}\)

Short Answer

Expert verified

The value of \({\rm{\theta }}\)is \(\sqrt {\rm{3}} \).

Step by step solution

01

Finding values of given equations.

\(\begin{aligned}{l}{\rm{r = 2sin\theta }}\\{\rm{\theta = }}\pi {\rm{/6}}\end{aligned}\)

First find the value,

\(\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}}{\rm{ = 2cos\theta }}\)

\({\rm{r}}\)into,

\(\begin{aligned}{c}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}{\rm{ = }}\frac{{\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}}{\rm{sin\theta + rcos\theta }}}}{{\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}}{\rm{cos\theta - rsin\theta }}}}\\{\rm{ = }}\frac{{{\rm{2cos\theta sin\theta + 2sin\theta cos\theta }}}}{{{\rm{2cos\theta cos\theta - 2sin\theta sin\theta }}}}\\{\rm{ = }}\frac{{{\rm{2sin2\theta }}}}{{{\rm{2co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta - 2si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta }}}}\\{\rm{ = }}\frac{{{\rm{sin2\theta }}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta - si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta }}}}\end{aligned}\)

02

Solve the equation.

The value of\({\rm{\theta = }}\pi {\rm{/6}}\)

\(\begin{aligned}{c}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}{\rm{ = }}\frac{{{\rm{sin}}\frac{\pi }{{\rm{3}}}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}\frac{\pi }{{\rm{6}}}{\rm{ - si}}{{\rm{n}}^{\rm{2}}}\frac{\pi }{{\rm{6}}}}}\\{\rm{ = }}\frac{{\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}}}{{\frac{{\rm{3}}}{{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}}}\\{\rm{ = }}\sqrt {\rm{3}} \end{aligned}\)

03

The graph is representing the given equation.

Tangent line in point-slope

\(\begin{aligned}{c}{\rm{y - }}{{\rm{y}}_{\rm{1}}}{\rm{ = m}}\left( {{\rm{x - }}{{\rm{x}}_{\rm{1}}}} \right){\rm{:}}\\{\rm{y - rsin(}}\pi {\rm{/6) = }}\sqrt {\rm{3}} {\rm{(x - rcos(}}\pi {\rm{/6))}}\end{aligned}\)

The value of \({\rm{\theta }}\)is \(\sqrt {\rm{3}} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

To determine,

a) The eccentricity of the polar equation \(r = \frac{{12}}{{3 - 10\cos \theta }}\).

b) To identify the conic which is represented by the polar equation \(r = \frac{{12}}{{3 - 10\cos \theta }}\).

c) An equation of the directrix of the polar equation \(r = \frac{{12}}{{3 - 10\cos \theta }}\).

d) To sketch the graph of the conic represented by the polar equation \(r = \frac{{12}}{{3 - 10\cos \theta }}\).

Find the area of the region that is bounded by the given curve and lies in the specified sector.

\({{\rm{r}}^{\rm{2}}}{\rm{ = 9sin2\theta ,r}} \ge {\rm{0,0}} \le {\rm{\theta }} \le {{\rm{\pi }} \mathord{\left/

{\vphantom {{\rm{\pi }} {\rm{2}}}} \right.

\kern-\nulldelimiterspace} {\rm{2}}}\)

Find the area of the shaded region.

To determine

a) To match the polar equation \(r = \sqrt \theta ,0 \le \theta \le 16\pi \) with the given graphs labeled as \({\rm{I}} - {\rm{VI}}\).

b) To match: The polar equation \(r = {\theta ^2}\) with the given graphs labeled as \({\rm{I}} - {\rm{VI}}\).

c) To match the polar equation \(r = 1 + 2\cos \theta \) with the given graphs labeled as \({\rm{I}} - {\rm{VI}}\).

d) To match the polar equation \(r = 2 + \sin 3\theta \) with the given graphs labeled as \({\rm{I}} - {\rm{VI}}\).

e) To match: The polar equation \(r = 1 + 2\sin 3\theta \) with the given graphs labeled as \({\rm{I}} - {\rm{VI}}\).

Show that the polar curve\({\rm{r = 4 + 2sec\theta }}\) (called conchoids) has the line\({\rm{x = 2}}\) as a vertical asymptote by showing that \(\mathop {{\rm{lim}}}\limits_{{\rm{r}} \to {\rm{ \pm x}}} {\rm{x = 2}}\) . Use this fact to help sketch the conchoids.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free