Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a calculator to find the length of the curve correct to four decimal places. If necessary, graph the curve to deter-mine the parameter interval \({\rm{r = sin(\theta /4)}}\).

Short Answer

Expert verified

\( \approx {\rm{17}}{\rm{.1568}}\)

Step by step solution

01

Graph

02

Evaluation.

\(\begin{aligned}{c}{\rm{ r = sin}}\frac{{\rm{\theta }}}{\begin{aligned}{l}{\rm{4}}\\\end{aligned}}\\{\rm{Keep in mind that the duration of sin (bx) is}}\\\frac{{{\rm{2\pi }}}}{{\rm{b}}}{\rm{ = }}\frac{{{\rm{2\pi }}}}{{\frac{{\rm{1}}}{{\rm{4}}}}}{\rm{ = 8\pi }}\\{\rm{As a result, the limitations will be 0 to 8\pi }}\\{\rm{The arc length will necessitate }}r\prime \\r\prime {\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{cos}}\frac{{\rm{\theta }}}{{\rm{4}}}\\\\{\rm{Use the magic calculator to plug into the arc length formula}}{\rm{.}}\\{\rm{L = }}\int_{\rm{a}}^{\rm{b}} {\sqrt {{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\left( {r\prime } \right)}^{\rm{2}}}} } {\rm{d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{8\pi }}} {\sqrt {{\rm{si}}{{\rm{n}}^{\rm{2}}}\frac{{\rm{\theta }}}{{\rm{4}}}{\rm{ + }}{{\left( {\frac{{\rm{1}}}{{\rm{4}}}{\rm{cos}}\frac{{\rm{\theta }}}{{\rm{4}}}} \right)}^{\rm{2}}}} } {\rm{d\theta }}\\\\\end{aligned}\)

\( \approx {\rm{17}}{\rm{.1568}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free