Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the exact length of the polar curve.

\({\rm{r}} = {{\rm{\theta }}^{\rm{2}}}{\rm{,0}} \le {\rm{\theta }} \le {\rm{2\pi }}\)

Short Answer

Expert verified

The exact length of the polar curve is \(\frac{{\rm{8}}}{{\rm{3}}} \cdot \left( {{{\left( {{{\rm{\pi }}^{\rm{2}}}{\rm{ + 1}}} \right)}^{{\rm{3/2}}}}{\rm{ - 1}}} \right)\).

Step by step solution

01

Differentiate the polar curve

Given curve is\({\rm{r}} = {{\rm{\theta }}^{\rm{2}}}\)

Differentiating based on power rule,

\(\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}} = {\rm{2}} \cdot {{\rm{\theta }}^{{\rm{2 - 1}}}}\)

\(\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}} = {\rm{2\theta }}\)

The formula for the length of the curve is given by

\(L = \int_{{{\rm{\theta }}_{\rm{1}}}}^{{{\rm{\theta }}_{\rm{2}}}} {\sqrt {{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{\rm{dr}}}}{{{\rm{d\theta }}}}} \right)}^{\rm{2}}}} } {\rm{d\theta }}\)

\(\begin{aligned}{c}L = \int_{\rm{0}}^{{\rm{2\pi }}} {\sqrt {{{\left( {{{\rm{\theta }}^{\rm{2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {{\rm{2\theta }}} \right)}^{\rm{2}}}} } {\rm{d\theta }}\\ = \int_{\rm{0}}^{{\rm{2\pi }}} {\sqrt {{{\rm{\theta }}^{\rm{4}}}{\rm{ + 4}}{{\rm{\theta }}^{\rm{2}}}} } {\rm{d\theta }}\end{aligned}\)

Further simplify as follows:

\(\begin{aligned}{c}\sqrt {{{\rm{\theta }}^{\rm{4}}}{\rm{ + 4}}{{\rm{\theta }}^{\rm{2}}}} = \sqrt {{{\rm{\theta }}^{\rm{2}}}\left( {{{\rm{\theta }}^{\rm{2}}}{\rm{ + 4}}} \right)} \\ = \sqrt {{{\rm{\theta }}^{\rm{2}}}} \sqrt {{{\rm{\theta }}^{\rm{2}}}{\rm{ + 4}}} \\ = {\rm{\theta }}\sqrt {{{\rm{\theta }}^{\rm{2}}}{\rm{ + 4}}} \end{aligned}\)

Therefore, integration over \(\left( {{\rm{0,2\pi }}} \right){\rm{,\theta }}\)is positive and \(\sqrt {{{\rm{\theta }}^{\rm{2}}}} = \left| {\rm{\theta }} \right| = {\rm{\theta }}\)

\(\begin{aligned}{c}L = \int_{\rm{0}}^{{\rm{2\pi }}} {\rm{\theta }} \sqrt {{{\rm{\theta }}^{\rm{2}}}{\rm{ + 4}}} {\rm{d\theta }}\\ = \int_{\rm{0}}^{{\rm{2\pi }}} {\sqrt {{{\rm{\theta }}^{\rm{2}}}{\rm{ + 4}}} } \left( {{\rm{\theta d\theta }}} \right)\end{aligned}\)

02

Integrating over the limit.

Substitute \({{\rm{\theta }}^{\rm{2}}}{\rm{ + 4}} = {\rm{u}}\)into the aboce equation and simplify.

\(\begin{aligned}{c}L = \int_{\rm{4}}^{{\rm{4}}{{\rm{\pi }}^{\rm{2}}}{\rm{ + 4}}} {\sqrt {\rm{u}} } \left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{du}}} \right)\\ = \frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{4}}^{{\rm{4}}{{\rm{\pi }}^{\rm{2}}}{\rm{ + 4}}} {{{\rm{u}}^{{\rm{1/2}}}}} {\rm{du}}\\ = \frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{{\rm{u}}^{\left( {{\rm{1/2}}} \right){\rm{ + 1}}}}}}{{\left( {{\rm{1/2}}} \right){\rm{ + 1}}}}} \right)_{\rm{4}}^{{\rm{4}}{{\rm{\pi }}^{\rm{2}}}{\rm{ + 4}}}\\ = \frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{{\rm{u}}^{{\rm{3/2}}}}}}{{{\rm{3/2}}}}} \right)_{\rm{4}}^{{\rm{4}}{{\rm{\pi }}^{\rm{2}}}{\rm{ + 4}}}\end{aligned}\)

Further simplify the above equation gives,

\(\begin{aligned}{c}L = \frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{2}}}{{\rm{3}}}{{\rm{u}}^{{\rm{3/2}}}}} \right)_{\rm{4}}^{{\rm{4}}{{\rm{\pi }}^{\rm{2}}}{\rm{ + 4}}}\\ = \frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{2}}}{{\rm{3}}} \cdot {{\left( {{\rm{4}}{{\rm{\pi }}^{\rm{2}}}{\rm{ + 4}}} \right)}^{{\rm{3/2}}}} - \frac{{\rm{2}}}{{\rm{3}}}{\rm{ \times }}{{\rm{4}}^{{\rm{3/2}}}}} \right)\frac{{\rm{1}}}{{\rm{3}}} \cdot {\left( {{{\rm{2}}^{\rm{2}}}} \right)^{{\rm{3/2}}}} \cdot {\left( {{{\rm{\pi }}^{\rm{2}}}{\rm{ + 1}}} \right)^{{\rm{3/2}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ \times }}{\left( {{{\rm{2}}^{\rm{2}}}} \right)^{{\rm{3/2}}}}\\ = \frac{{\rm{1}}}{{\rm{3}}} \cdot {{\rm{2}}^{\rm{3}}}{\left( {{{\rm{\pi }}^{\rm{2}}}{\rm{ + 1}}} \right)^{{\rm{3/2}}}} - \frac{{\rm{1}}}{{\rm{3}}} \times {{\rm{2}}^{\rm{3}}}\\ = \frac{{\rm{8}}}{{\rm{3}}}\left( {{{\left( {{{\rm{\pi }}^{\rm{2}}}{\rm{ + 1}}} \right)}^{{\rm{3/2}}}} - {\rm{1}}} \right)\end{aligned}\)

Therefore, the exact length of the polar curve is \(\frac{{\rm{8}}}{{\rm{3}}} \cdot \left( {{{\left( {{{\rm{\pi }}^{\rm{2}}}{\rm{ + 1}}} \right)}^{{\rm{3/2}}}}{\rm{ - 1}}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free