The length of the curve can be obtained by the following formula:
\(L = \int\limits_\alpha ^\beta {\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2}} } dt\)
The length can be given as:
\(\begin{array}{l}L = \int\limits_\alpha ^\beta {\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2}} } dt\\L = \int\limits_0^2 {\sqrt {2 + 2{e^{ - 2t}}} } dt\\L = 2 - \sqrt 2 {\sinh ^{ - 1}}(1) + \sqrt 2 \left( {{{\sinh }^{ - 1}}({e^2}) - \frac{{\sqrt {1 + {e^4}} }}{{{e^2}}}} \right)\\L \approx 3.1416\end{array}\)
Therefore, the length of the given curve can be given as: \(L \approx 3.1416\)