Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find all points of intersection of the given curves.

\({{\rm{r}}^{\rm{2}}}{\rm{ = sin2\theta ,}}\;\;\;{{\rm{r}}^{\rm{2}}}{\rm{ = cos2\theta }}\).

Short Answer

Expert verified

Therefore, the results of the intersection points of the curve is\(\left( {\sqrt {\frac{{\sqrt {\rm{2}} }}{{\rm{2}}}} {\rm{,}}\frac{{\rm{\pi }}}{{\rm{8}}}} \right){\rm{,}}\left( {\sqrt {\frac{{\sqrt {\rm{2}} }}{{\rm{2}}}} {\rm{,}}\frac{{{\rm{9\pi }}}}{{\rm{8}}}} \right)\)and the pole.

Step by step solution

01

Intersection points.

Given

\(\begin{aligned}{l}{{\rm{r}}^{\rm{2}}}{\rm{ = sin2\theta }}\\{{\rm{r}}^{\rm{2}}}{\rm{ = cos2\theta }}\end{aligned}\)

The figures are finished\({\rm{0}} \le {\rm{\theta < 2\pi }}\)(excluding the intervals where cos or sin are negative)

By setting the equations equal to each other, locate certain crossings. Only look for angles in which cos and sin are positive. Also, because\({\rm{2\theta }}\)appears in the equations, check for angles from\({\rm{2\theta = 0to4\pi }}\)that direction.

\(\begin{aligned}{l}{\rm{sin2\theta = cos2\theta }}\\{\rm{2\theta = }}\frac{{\rm{\pi }}}{{\rm{4}}}{\rm{,}}\frac{{{\rm{9\pi }}}}{{\rm{4}}}\\{\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{8}}}{\rm{,}}\frac{{{\rm{9\pi }}}}{{\rm{8}}}\end{aligned}\)

02

Resulting.

The graph, that they also meet at the pole, which both graphs pass through at different times\({\rm{\theta }}\). Look for areas where\({\rm{r = 0}}\) angles\({\rm{4\pi }}\) can be found.

\(\begin{aligned}{l}{\rm{0 = cos2\theta }}\\{\rm{2\theta = }}\frac{{\rm{\pi }}}{{\rm{2}}}{\rm{,}}\frac{{{\rm{3\pi }}}}{{\rm{2}}}{\rm{,}}\frac{{{\rm{5\pi }}}}{{\rm{2}}}{\rm{,}}\frac{{{\rm{6\pi }}}}{{\rm{2}}}\\{\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{4}}}{\rm{,}}\frac{{{\rm{3\pi }}}}{{\rm{4}}}{\rm{,}}\frac{{{\rm{5\pi }}}}{{\rm{4}}}{\rm{,}}\frac{{{\rm{6\pi }}}}{{\rm{4}}}\\{\rm{0 = sin2\theta }}\end{aligned}\)

(\({\rm{2\theta = 0,\pi ,3\pi }}\)),\({\rm{4\pi }}\)is the beginning of a new complete cycle.

\({\rm{\theta = 0,}}\frac{{\rm{\pi }}}{{\rm{2}}}{\rm{,}}\frac{{{\rm{3\pi }}}}{{\rm{2}}}\)

The sites of the intersection are the same\({\rm{\theta }}\). Note that the equations are written as\({{\rm{r}}^{\rm{2}}}\).

\(\left( {\sqrt {\frac{{\sqrt {\rm{2}} }}{{\rm{2}}}} {\rm{,}}\frac{{\rm{\pi }}}{{\rm{8}}}} \right){\rm{,}}\left( {\sqrt {\frac{{\sqrt {\rm{2}} }}{{\rm{2}}}} {\rm{,}}\frac{{{\rm{9\pi }}}}{{\rm{8}}}} \right)\)

Negative values\({\rm{r}}\)are also possible, but the positive values already cover those points. Junctions of poles at various locations\({\rm{\theta }}\).

\(\left( {{\rm{0,}}\frac{{\rm{\pi }}}{{\rm{4}}}} \right){\rm{,}}\left( {{\rm{0,}}\frac{{{\rm{3\pi }}}}{{\rm{4}}}} \right){\rm{,}}\left( {{\rm{0,}}\frac{{{\rm{5\pi }}}}{{\rm{4}}}} \right){\rm{,}}\left( {{\rm{0,}}\frac{{{\rm{6\pi }}}}{{\rm{4}}}} \right){\rm{,(0,0),}}\left( {{\rm{0,}}\frac{{\rm{\pi }}}{{\rm{2}}}} \right){\rm{,}}\left( {{\rm{0,}}\frac{{{\rm{3\pi }}}}{{\rm{2}}}} \right)\)

Thus, the resulting is \(\left( {\sqrt {\frac{{\sqrt {\rm{2}} }}{{\rm{2}}}} {\rm{,}}\frac{{\rm{\pi }}}{{\rm{8}}}} \right){\rm{,}}\left( {\sqrt {\frac{{\sqrt {\rm{2}} }}{{\rm{2}}}} {\rm{,}}\frac{{{\rm{9\pi }}}}{{\rm{8}}}} \right)\)and the pole.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free