Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the area of the region that lies inside both curves.

\({{\rm{r}}^{\rm{2}}}{\rm{ = 2sin2\theta ,}}\;\;\;{\rm{r = 1}}\).

Short Answer

Expert verified

The resulting area of the zone between the two curves\({\rm{2 - }}\sqrt {\rm{3}} {\rm{ + }}\frac{{\rm{\pi }}}{{\rm{3}}}\).

Step by step solution

01

Quadrant cross.

The number\({\rm{\theta }}\) at which the two graphs in Quadrant one cross

\(\begin{aligned}{l}{\rm{2sin2\theta = }}{{\rm{1}}^{\rm{2}}}\\{\rm{2sin2\theta = 1}}\end{aligned}\)

Divide each half by two

\(\begin{aligned}{l}{\rm{sin2\theta = }}\frac{{\rm{1}}}{{\rm{2}}}\\{\rm{2\theta = }}\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{,}}\frac{{{\rm{5\pi }}}}{{\rm{6}}}\\{\rm{\theta = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{,}}\frac{{{\rm{5\pi }}}}{{{\rm{12}}}}\end{aligned}\)

02

Resulting.

Area\({\rm{ = }}\)Area inside the ribbon\({\rm{ - }}\)Area outside the circle but inside the ribbon

\(\begin{aligned}{l}\int_{\rm{0}}^{{\rm{\pi /2}}} {\rm{2}} {\rm{sin2\theta d\theta - }}\int_{{\rm{\pi /12}}}^{{\rm{5\pi /12}}} {\rm{2}} {\rm{sin2\theta - 1d\theta }}\\{\rm{ = ( - cos2\theta )}}_{\rm{0}}^{{\rm{\pi /2}}}{\rm{ - ( - cos2\theta - \theta )}}_{{\rm{\pi /12}}}^{{\rm{5\pi /12}}}\\{\rm{ = 2 - }}\left( {{\rm{ - cos}}\frac{{{\rm{5\pi }}}}{{\rm{6}}}{\rm{ - }}\frac{{{\rm{5\pi }}}}{{{\rm{12}}}}} \right){\rm{ + }}\left( {{\rm{ - cos}}\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ - }}\frac{{\rm{\pi }}}{{{\rm{12}}}}} \right)\\{\rm{ = 2 - }}\left( {\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{ - }}\frac{{{\rm{5\pi }}}}{{{\rm{12}}}}} \right){\rm{ + }}\left( {{\rm{ - }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{ - }}\frac{{\rm{\pi }}}{{{\rm{12}}}}} \right)\\{\rm{ = 2 - }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{ + }}\frac{{{\rm{5\pi }}}}{{{\rm{12}}}}{\rm{ - }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{ - }}\frac{{\rm{\pi }}}{{{\rm{12}}}}\\{\rm{ = 2 - }}\sqrt {\rm{3}} {\rm{ + }}\frac{{\rm{\pi }}}{{\rm{3}}}\end{aligned}\)

Therefore, the area of the region that lies inside both curves is\({\rm{2 - }}\sqrt {\rm{3}} {\rm{ + }}\frac{{\rm{\pi }}}{{\rm{3}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free