Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the area of the region that lies inside both curves.

\({\rm{r = sin2\theta ,r = cos2\theta }}\)

Short Answer

Expert verified

The resulting area of the zone between the two curves\(\frac{{\rm{\pi }}}{{\rm{2}}}{\rm{ - 1}}\).

Step by step solution

01

Polar region.

As shown, there are nine intersection locations, one at the pole and the other eight in each quadrant. By setting the two equations equal to each other, we can determine one of the remaining eight (at least its\({\rm{\theta }}\)-value).

\(\begin{aligned}{c}{\rm{sin2\theta = cos2\theta }}\\\frac{{{\rm{sin2\theta }}}}{{{\rm{cos2\theta }}}}{\rm{ = 1}}\\{\rm{tan2\theta = 1}}\\{\rm{2\theta = ta}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{1}}\\{\rm{2\theta = }}\frac{{\rm{\pi }}}{{\rm{4}}}\\{\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{8}}}\end{aligned}\)

The sought-after territory is divided into eight divisions. Each quadrant has two such portions, each of which resembles an elongated and "pointed" ellipse.

Because each portion has the same area, we may find the area of this region by multiplying the area of one section by eight. To calculate the area of a single section, take the area of the polar region from the blue curve from 0 to\({\rm{\pi /8}}\) and multiply it by the area of the polar region from the purple curve from to. However, the area of the polar region from the purple curve\({\rm{\pi /8}}\) to\({\rm{\pi /4}}\) is identical to the area of the polar region from the blue curve\({\rm{\pi /8}}\) to \({\rm{\pi /4}}\).

02

Resulting.

Polar region

\(\begin{aligned}{c}{\rm{A = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{{\rm{\pi /8}}} {{{{\rm{(sin2\theta )}}}^{\rm{2}}}} {\rm{d\theta + }}\frac{{\rm{1}}}{{\rm{2}}}\int_{{\rm{\pi /8}}}^{{\rm{\pi /4}}} {{{{\rm{(cos2\theta )}}}^{\rm{2}}}} {\rm{d\theta }}\\{\rm{ = 2 \times }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{{\rm{\pi /8}}} {{{{\rm{(sin2\theta )}}}^{\rm{2}}}} {\rm{d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /8}}} {{\rm{si}}{{\rm{n}}^{\rm{2}}}} {\rm{2\theta d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /8}}} {\frac{{\rm{1}}}{{\rm{2}}}} {\rm{(1 - cos4\theta )d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{\theta - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{sin4\theta }}} \right)_{\rm{0}}^{{\rm{\pi /8}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{\pi }}}{{\rm{8}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{(1)}}} \right)\end{aligned}\)

\({\rm{ = }}\frac{{\rm{\pi }}}{{{\rm{16}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{8}}}\)

Therefore the resulting region of the area is

\(\begin{aligned}{c}{\rm{A = 8}}\left( {\frac{{\rm{\pi }}}{{{\rm{16}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{8}}}} \right)\\{\rm{ = }}\frac{{\rm{\pi }}}{{\rm{2}}}{\rm{ - 1}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free