Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sketch the curve with the given polar equation by first sketching the graph of as a function of\({\rm{\theta }}\) in Cartesian coordinates.

\({\rm{r = - 2sin\theta }}\)

Short Answer

Expert verified

A circle having a radius of \({\rm{1}}\)and a center of\(\left( {{\rm{0, - 1}}} \right){\rm{.}}\)

\({{\rm{x}}^{\rm{2}}}{\rm{ + (y + 1}}{{\rm{)}}^{\rm{2}}}{\rm{ = }}{{\rm{1}}^{\rm{2}}}\)

Step by step solution

01

Step 1: Both sides should be multiplied by \({\rm{r}}{\rm{.}}\)

\({\rm{r = - 2sin\theta }}\)

\({{\rm{r}}^{\rm{2}}}{\rm{ = - 2rsin\theta }}\)

Keep in mind

\(\begin{array}{c}{{\rm{r}}^{\rm{2}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\\\;\;\;{\rm{rsin\theta = y}}\\{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = - 2y}}\\{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + 2y = 0}}\end{array}\)

Add \({\rm{1}}\) to each side.

\(\begin{array}{c}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + 2y + 1 = 1}}\\{{\rm{x}}^{\rm{2}}}{\rm{ + (y + 1}}{{\rm{)}}^{\rm{2}}}{\rm{ = }}{{\rm{1}}^{\rm{2}}}\end{array}\)

02

This is a circle with a radius of \({\rm{1}}\) and a center of \(\left( {{\rm{0, - 1}}} \right){\rm{.}}\)

Mark the position \(\left( {{\rm{0, - 1}}} \right)\)on the graph, then creates a circle with this point as the centre.

03

Step 3: A circle with a radius of \({\rm{1}}\)and a center of \(\left( {{\rm{0, - 1}}} \right){\rm{.}}\)

\({{\rm{x}}^{\rm{2}}}{\rm{ + (y + 1}}{{\rm{)}}^{\rm{2}}}{\rm{ = }}{{\rm{1}}^{\rm{2}}}\)

This is a circle with a radius of \({\rm{1}}\) and a center of \(\left( {{\rm{0, - 1}}} \right){\rm{.}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free