Chapter 9: Q14E (page 528)
Graph the curve and find the area that it encloses.
\({\rm{r = 3 - 2cos4\theta }}\)
Short Answer
The radius of the curve and the territory it encompasses\({\rm{A = 11\pi }}{\rm{.}}\;\;\)
Chapter 9: Q14E (page 528)
Graph the curve and find the area that it encloses.
\({\rm{r = 3 - 2cos4\theta }}\)
The radius of the curve and the territory it encompasses\({\rm{A = 11\pi }}{\rm{.}}\;\;\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the curve and find the area that it encloses.
\({\rm{r = 1 - sin\theta }}\)
Sketch the curve and find the area that it encloses.
\({\rm{r = 1 - sin\theta }}\)
Find the area of the region that is bounded by the given curve and lies in the specified sector.
\({\rm{r = tan\theta ,}}{{\rm{\pi }} \mathord{\left/
{\vphantom {{\rm{\pi }} {{\rm{6}} \le }}} \right.
\kern-\nulldelimiterspace} {{\rm{6}} \le }}{\rm{\theta }} \le {{\rm{\pi }} \mathord{\left/
{\vphantom {{\rm{\pi }} {\rm{3}}}} \right.
\kern-\nulldelimiterspace} {\rm{3}}}\)
Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
\(0 \le r < 2,\;\;\;{\rm{\pi }} \le {\rm{\theta }} \le \frac{{{\rm{3\pi }}}}{{\rm{2}}}\)
Use a calculator to find the length of the curve correct to four decimal places. If necessary, graph the curve to determine the parameter interval.
\({\rm{r = sin(6sin\theta )}}\)
Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
\({\rm{1}} \le {\rm{r}} \le {\rm{3,}}\frac{{\rm{\pi }}}{{\rm{6}}} < {\rm{\theta }} < \frac{{{\rm{5\pi }}}}{{\rm{3}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.