Chapter 12: Q9E (page 699)
Evaluate the double integral:\(\iint\limits_D {xdA,D = \{ (x,y)/0 \leqslant x \leqslant \Pi ,0 \leqslant y \leqslant sinx\} }\)
Short Answer
value of integral is \(\Pi \)
Chapter 12: Q9E (page 699)
Evaluate the double integral:\(\iint\limits_D {xdA,D = \{ (x,y)/0 \leqslant x \leqslant \Pi ,0 \leqslant y \leqslant sinx\} }\)
value of integral is \(\Pi \)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the iterated integrand \(\int_0^1 {\int_0^v {\sqrt {1 + {e^v}} } } dwdv. \)
Calculate the iterated integral.
\(\int {_0^2} \int {_0^4{y^3}{e^{2x}}dydx} \)
\(\int\limits_0^8 {\int\limits_{\sqrt[3]{y}}^2 {{e^{{x^4}}}dx} } dy\).
Change from rectangular to cylindrical coordinates.
a. \(\left( {{\rm{ - 1,1,1}}} \right)\)
b. \(\left( {{\rm{ - 2,2}}\sqrt {\rm{3}} {\rm{,3}}} \right)\)
Graph the solid that the lies between the surfaces\({\bf{Z = }}{{\bf{e}}^{{\bf{ - }}{{\bf{x}}^{\bf{2}}}}}{\bf{cos}}\left( {{{\bf{x}}^{\bf{2}}}{\bf{ + }}{{\bf{y}}^{\bf{2}}}} \right){\bf{ and Z = 2 - }}{{\bf{x}}^{\bf{2}}}{\bf{ - }}{{\bf{y}}^{\bf{2}}}\)for\(\left| x \right| \le 1,\left| y \right| \le 1\).Use a compute algebra system to approximate the volume of this solid correct to four decimal places.
What do you think about this solution?
We value your feedback to improve our textbook solutions.