Chapter 12: Q8E (page 720)
Find the total mass and the center of mass of the lamina. The region is\(y = {x^2},y = x + 2\). The density is\(\rho (x,y) = kx\).
Short Answer
The total mass of lamina is \(\frac{{9k}}{4}\,{\rm{units}}\) and the center of mass of lamina is \(\left( {\frac{7}{5},\frac{5}{2}} \right){\rm{. }}\)
Step by step solution
The concept of the total mass and center of the mass
The total mass of the lamina is
The center of mass of the lamina that occupies the given region\(D\)is\((\bar x,\bar y){\rm{. }}\)
Here,
If\(g(x)\)is the function of\(x\)and\(h(y)\)is the function of\(y\)then,
\(\int_a^b {\int_c^d g } (x)h(y)dydx = \int_a^b g (x)dx\int_c^d h (y)dy\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,..........\left( 1 \right)\)
Use the above concept to find the mass and center of mass of the lamina
The region\({\rm{D}}\)is enclosed by the lines \(y = {x^2},y = x + 2\)
The density function is \(\rho (x,y) = kx{\rm{. }}\)
The intersection points of the region are found as follows.
The equations are set equal to solve for \(x.\)
\(\begin{aligned}{c}x + 2 = {x^2}\\{x^2} - x - 2 = 0\\(x - 2)(x + 1) = 0\\x = - 1,\,2\end{aligned}\)
The points of intersection are \(\left( { - 1,{{( - 1)}^2}} \right) = ( - 1,1)\) and \(\left( {2,{2^2}} \right) = (2,4).\)
The value of \(x\)and \(y\)ranges between \( - 1 \le x \le 2\) and \({x^2} \le y \le x + 2\) respectively.
The total mass of lamina is,
Integrate with respect to \(y,\)
\(\begin{aligned}{c}m = \int_{ - 1}^2 k x(y)_{{x^2}}^{x + 2}dx\\ = \int_{ - 1}^2 k x\left( {x + 2 - {x^2}} \right)dx\\ = k\int_{ - 1}^2 {\left( {{x^2} + 2x - {x^3}} \right)} dx\\ = k\left( {\frac{{{x^3}}}{3} + {x^2} - \frac{{{x^4}}}{4}} \right)_{ - 1}^2\end{aligned}\)
On applying limits, the value of\(m\)is given by,
\(\begin{aligned}{c}m = k\left( {\left( {\frac{{{2^3}}}{3} + {2^2} - \frac{{{2^4}}}{4}} \right) - \left( {\frac{{{{( - 1)}^3}}}{3} + {{( - 1)}^2} - \frac{{{{( - 1)}^4}}}{4}} \right)} \right)\\ = k\left( {\frac{8}{3} + 4 - \frac{{16}}{4}} \right) - k\left( { - \frac{1}{3} + 1 - \frac{1}{4}} \right)\\ = k\left( {\frac{{8 + 1}}{3} + 4 - 1 - \frac{{16 - 1}}{4}} \right)\\ = k\left( {6 - \frac{{15}}{4}} \right)\end{aligned}\)
On further simplification, the total mass becomes,
\(\begin{aligned}{c}m = \frac{{k(24 - 15)}}{4}\\ = \frac{{9k}}{4}\,{\rm{units}}\end{aligned}\)
In order to get the coordinates of the center of the mass, find\(\bar x{\rm{ and }}\bar y{\rm{. }}\)
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar x = \frac{k}{{\frac{{9k}}{4}}}\int_{ - 1}^2 {\left( {{x^3} + 2{x^2} - {x^4}} \right)} dx\\ = \frac{{4k}}{{9k}}\left( {\frac{{{x^4}}}{4} + \frac{{2{x^3}}}{3} - \frac{{{x^5}}}{5}} \right)_{ - 1}^2\\ = \frac{4}{9}\left( {\left( {\frac{{{{(2)}^4}}}{4} + \frac{{2{{(2)}^3}}}{3} - \frac{{{2^5}}}{5}} \right) - \left( {\frac{{{{( - 1)}^4}}}{4} + \frac{{2{{( - 1)}^3}}}{3} - \frac{{{{( - 1)}^5}}}{5}} \right)} \right)\\ = \frac{4}{9}\left( {\frac{{16}}{4} + \frac{{16}}{3} - \frac{{32}}{5}} \right) - k\left( {\frac{1}{4} - \frac{2}{3} + \frac{1}{5}} \right)\end{aligned}\)
On further simplification,
\(\begin{aligned}{c}\bar x = \frac{4}{9}\left( {\left( {\frac{{16 - 1}}{4} + \frac{{16 + 2}}{3} - \frac{{32 + 1}}{5}} \right)} \right)\\ = \frac{4}{9}\left( {\frac{{15}}{4} + \frac{{18}}{3} - \frac{{33}}{5}} \right)\\ = \frac{4}{9}\left( {\frac{{189}}{{60}}} \right)\\ = \frac{{21}}{{15}}\\ = \frac{7}{5}\end{aligned}\)
The \(y\)-coordinate of the center of the mass is given by,
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar y = \frac{4}{{18}}\int_{ - 1}^2 {\left( {x\left( {{x^2} + 4x + 4} \right) - {x^5}} \right)} dx\\ = \frac{4}{{18}}\int_{ - 1}^2 {\left( {{x^3} + 4{x^2} + 4x - {x^5}} \right)} dx\\ = \frac{4}{{18}}\left( {\frac{{{x^4}}}{4} + \frac{{4{x^3}}}{3} + 2{x^2} - \frac{{{x^6}}}{6}} \right)_{ - 1}^2\\ = \frac{4}{{18}}\left( {\left( {\frac{{{2^4}}}{4} + \frac{{4{{(2)}^3}}}{3} + 2{{(2)}^2} - \frac{{{{(2)}^6}}}{6}} \right) - \left( {\frac{{{{( - 1)}^4}}}{4} + \frac{{4{{( - 1)}^3}}}{3} + 2{{( - 1)}^2} - \frac{{{{( - 1)}^6}}}{6}} \right)} \right)\end{aligned}\)
On further simplification,
\(\begin{aligned}{c}\bar y = \frac{4}{{18}}\left( {\frac{{16}}{4} + \frac{{32}}{3} + 8} \right.\left. { - \frac{{64}}{6} - \frac{1}{4} + \frac{4}{3} - 2 + \frac{1}{6}} \right)\\ = \frac{4}{{18}}\left( {\frac{{45}}{4}} \right)\\ = \frac{{45}}{{18}}\\ = \frac{5}{2}\end{aligned}\)
The center of mass of lamina is \((\bar x,\bar y) = \left( {\frac{7}{5},\frac{5}{2}} \right).\)
Thus, the total mass of lamina is \(\frac{{9k}}{4}\,{\rm{units}}\) and the center of mass of lamina is \(\left( {\frac{7}{5},\frac{5}{2}} \right){\rm{. }}\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!