Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the double integral by first identifying it as the volume of a solid., \(R = \left\{ {\left( {x,y} \right)/0 \le x \le 5,0 \le y \le 3} \right\}\)

Short Answer

Expert verified

Finding the value of integral

,\(R = \left\{ {\left( {x,y} \right)/0 \le x \le 5,0 \le y \le 3} \right\}\)

Step by step solution

01

Given data:

The integral is given by,

, where region is defined as

\(R = \left\{ {\left( {x,y} \right)/0 \le x \le 5,0 \le y \le 3} \right\}\)

The objection is to find the value of integral.

02

Finding double integral:

Substitute the limits of x and y variable as follows

\(\int\limits_0^3 {\int\limits_0^5 {\left( {5 - x} \right)dxdy = \int\limits_0^3 {\left[ {\int\limits_0^5 {\left( {5 - x} \right)dx} } \right]dy} } } \)

\( = \int\limits_0^3 {\left[ {\left( {5x} \right)_0^5 - \left( {\frac{{{x^2}}}{2}} \right)_0^5} \right]} dy\)

\( = \int\limits_0^3 {\left[ {5\left( {5 - 0} \right) - \frac{1}{2}\left( {{{\left( 5 \right)}^2} - 0} \right)_0^5} \right]} dy\)

\( = \int\limits_0^3 {\left[ {25 - \frac{{25}}{2}} \right]} dy\)

\( = \int\limits_0^3 {\left( {\frac{{50 - 25}}{2}} \right)} dy\)

\( = \int\limits_0^3 {\frac{{25}}{2}} dy\)

\( = \frac{{25}}{2}\int\limits_0^3 {dy} \)

\( = \frac{{25}}{2}\left( y \right)_0^3\)

\(\begin{array}{l} = \frac{{25}}{2}\left( {3 - 0} \right)\\ = \frac{{25}}{2}\left( 3 \right)\end{array}\)

\( \Rightarrow \int\limits_0^3 {\int\limits_0^5 {\left( {5 - x} \right)dxdy = \frac{{75}}{2}} } \)

Hence, the value of integral is

\(\int\limits_0^3 {\int\limits_0^5 {\left( {5 - x} \right)dxdy = \frac{{75}}{2}} } \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the moment of inertia about the z-axis of the solid cone.

The average value of a function\({\bf{f}}\left( {{\bf{x,y}}} \right)\)over a rectangle\({\bf{R}}\)is defined to be,

\({{\bf{f}}_{{\bf{ave}}}}{\bf{ = }}\frac{{\bf{1}}}{{{\bf{A}}\left( {\bf{R}} \right)}}\int {\int\limits_{\bf{R}} {{\bf{f}}\left( {{\bf{x,y}}} \right)} } {\bf{dA}}\)

Find the average value of\({\bf{f}}\)over the given rectangle.

\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{y}}\)

\({\bf{R}}\)has vertices\(\left( {{\bf{ - 1,0}}} \right){\bf{,}}\left( {{\bf{ - 1,5}}} \right){\bf{,}}\left( {{\bf{1,5}}} \right){\bf{,}}\left( {{\bf{1,0}}} \right)\).

In evaluating a double integral over a region\(D\), sum of iterated integrals was obtained as follows:

\(\int {\int\limits_D {f\left( {x,y} \right)} } dA = \int\limits_0^1 {\int\limits_0^{2y} {f\left( {x,y} \right)} } dxdy + \int\limits_1^3 {\int\limits_0^{2 - y} {f\left( {x,y} \right)dxdy} } \).

Sketch the region\(D\)and express the double integral as an iterated integral with reversed order of integration.

Find the average value of the function\({\rm{f(x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{\rm{z}}\)over the region enclosed by the parabolic\({\rm{z = 1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)and the plane z=0.

A cylindrical shell is \({\rm{20cm}}\) long; with inner radius \({\rm{6cm}}\) and outer radius \({\rm{7cm}}\) write inequalities that describe the shell in an appropriate coordinate system. Explain how you have positioned the coordinate system concerning the shell.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free