Chapter 12: Q8E (page 707)
Evaluate \(\iint\limits_D {\frac{y}{{1 + {x^5}}}dA,D = \{ (x,y)/0 \leqslant x \leqslant 1,0 \leqslant y \leqslant {x^2}\} }\)
Short Answer
value is \(\frac{{ln(2)}}{{10}}\)
Chapter 12: Q8E (page 707)
Evaluate \(\iint\limits_D {\frac{y}{{1 + {x^5}}}dA,D = \{ (x,y)/0 \leqslant x \leqslant 1,0 \leqslant y \leqslant {x^2}\} }\)
value is \(\frac{{ln(2)}}{{10}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn evaluating a double integral over a region\(D\), sum of iterated integrals was obtained as follows:
\(\int {\int\limits_D {f\left( {x,y} \right)} } dA = \int\limits_0^1 {\int\limits_0^{2y} {f\left( {x,y} \right)} } dxdy + \int\limits_1^3 {\int\limits_0^{2 - y} {f\left( {x,y} \right)dxdy} } \).
Sketch the region\(D\)and express the double integral as an iterated integral with reversed order of integration.
If E is the solid of Exercise 16 with density function\({\rm{\rho (x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\),find the following quantities, correct to three decimal places.
\(\int\limits_{{\rm{\pi /4}}}^{{\rm{3\pi /4}}} {\int\limits_{\rm{1}}^{\rm{2}} {{\rm{r dr d\theta }}} } \)
Evaluate \(\iiint_{\text{E}}{{{\text{x}}^{\text{2}}}}\text{dV}\), where \({\rm{E}}\) is the solid that lies within the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\), above the plane \({\rm{z = 0}}\), and below the cone \({{\rm{z}}^{\rm{2}}}{\rm{ = 4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}\).Use cylindrical coordinates.
\(\int\limits_{{\rm{\pi /2}}}^{\rm{\pi }} {\int\limits_{\rm{0}}^{{\rm{2 sin\theta }}} {{\rm{r dr d\theta }}} } \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.