Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Identify the surface whose equation is given \({\rm{\rho = sin\theta sin}}\phi \).

Short Answer

Expert verified

The surface of the given equation is a sphere of radius \(\frac{{\rm{1}}}{{\rm{2}}}\) centered at \(\left( {{\rm{0,}}\frac{{\rm{1}}}{{\rm{2}}}{\rm{,0}}} \right)\).

Step by step solution

01

Given data.

\({\rm{\rho = sin\theta sin}}\phi \)

02

The surface of the equation.

Rearrange the equation as following

Multiply in \({\rm{\rho }}\)

\(\begin{array}{c}{\rm{ \rho *\rho = (2 cos \theta ) *\rho }}\\{{\rm{\rho }}^{\rm{2}}}{\rm{ = \rho 2 cos \theta }}\end{array}\)

Spherical coordinates,

\(\begin{array}{l}{\rm{(1)x = \rho sin}}\phi {\rm{cos\theta }}\\{\rm{(2)y = \rho sin}}\phi {\rm{sin\theta }}\\{\rm{(3)z = \rho cos}}\phi \\{\rm{(4)}}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = }}{{\rm{\rho }}^{\rm{2}}}\end{array}\)

Therefore, \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = y}}\)

To get enter the \({\rm{y}}\) square,

\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{\left( {{\rm{y - }}\frac{{\rm{1}}}{{\rm{2}}}} \right)^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\)

Therefore, this is a sphere of radius \(\frac{{\rm{1}}}{{\rm{2}}}\) centered at \(\left( {{\rm{0,}}\frac{{\rm{1}}}{{\rm{2}}}{\rm{,0}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free