Chapter 12: Q7E (page 720)
Find the total mass and the center of mass of the lamina. The region is\(y = 1 - {x^2},y = 0\). The density is\(\rho (x,y) = ky\).
Short Answer
The total mass of lamina is \(\frac{{8k}}{{15}}\,{\rm{units}}\) and the center of mass of lamina is \(\left( {0,\frac{4}{7}} \right).\)
Step by step solution
The concept of the total mass and center of the mass
The total mass of the lamina is
The center of mass of the lamina that occupies the given region\(D\)is\((\bar x,\bar y){\rm{. }}\)
Here,
If\(g(x)\)is the function of\(x\)and\(h(y)\)is the function of\(y\)then,
\(\int_a^b {\int_c^d g } (x)h(y)dydx = \int_a^b g (x)dx\int_c^d h (y)dy\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,........\left( 1 \right)\)
Use the above concept to find the mass and center of mass of the lamina
The region\({\rm{D}}\)is bounded by \(y = 1 - {x^2},y = 0\)
The density function is \(\rho (x,y) = ky\)
The total mass of lamina is,
Integrate with respect to\(y\)and apply the corresponding limit,
\(\begin{aligned}{c}m = k\int_{ - 1}^1 {\left( {\frac{{{y^2}}}{2}} \right)_0^{1 - {x^2}}} dx\\ = \int_{ - 1}^1 {\left( {\frac{{{{\left( {1 - {x^2}} \right)}^2}}}{2} - \frac{{{{(0)}^2}}}{2}} \right)} dx\\ = \int_{ - 1}^1 {\left( {\frac{1}{2} - \frac{{2{x^2}}}{2} + \frac{{{x^4}}}{2} - 0} \right)} dx\\ = k\int_{ - 1}^1 {\left( {\frac{1}{2} - {x^2} + \frac{{{x^4}}}{2}} \right)} dx\end{aligned}\)
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}m = k\left( {\frac{x}{2} - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{{2(5)}}} \right)_{ - 1}^1\\ = k\left( {\left( {\frac{{(1)}}{2} - \frac{{{{(1)}^3}}}{3} + \frac{{{{(1)}^5}}}{{10}}} \right) - \left( {\frac{{( - 1)}}{2} - \frac{{{{( - 1)}^3}}}{3} + \frac{{{{( - 1)}^5}}}{{10}}} \right)} \right)\\ = k\left( {\left( {\frac{1}{2} - \frac{1}{3} + \frac{1}{{10}}} \right) - \left( { - \frac{1}{2} + \frac{1}{3} - \frac{1}{{10}}} \right)} \right)\\ = k\left( {1 - \frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{{8k}}{{15}}\end{aligned}\)
In order to get the coordinates of the center of the mass, find\(\bar x{\rm{ and }}\bar y{\rm{. }}\)
Integrate with respect to \(y\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar x = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{{x{y^2}}}{2}} \right)_0^{1 - {x^2}}} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{{x{{\left( {1 - {x^2}} \right)}^2}}}{2} - \frac{{x{{(0)}^2}}}{2}} \right)} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{{x\left( {1 - 2{x^2} + {x^4}} \right)}}{2} - 0} \right)} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{x}{2} - \frac{{2{x^3}}}{2} + \frac{{{x^5}}}{2}} \right)} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{x}{2} - {x^3} + \frac{{{x^5}}}{2}} \right)} dx\end{aligned}\)
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar x = \frac{{15}}{8}\left( {\frac{{{x^2}}}{{2(2)}} - \frac{{{x^4}}}{3} + \frac{{{x^6}}}{{2(6)}}} \right)_{ - 1}^1\\ = \frac{{15}}{8}\left( {\left( {\frac{{{{(1)}^2}}}{4} - \frac{{{{(1)}^4}}}{3} + \frac{{{{(1)}^6}}}{{12}}} \right) - \left( {\frac{{{{( - 1)}^2}}}{4} - \frac{{{{( - 1)}^4}}}{3} + \frac{{{{( - 1)}^6}}}{{12}}} \right)} \right)\\ = \frac{{15}}{8}\left( {\left( {\frac{1}{4} - \frac{1}{3} + \frac{1}{{12}}} \right) - \left( {\frac{1}{4} - \frac{1}{3} + \frac{1}{{12}}} \right)} \right)\\ = \frac{{15}}{8}(0 - 0 + 0)\\ = 0\end{aligned}\)
\(\begin{aligned}{c}\bar y = \frac{1}{m}\int_D^1 y \rho (x,y)dA\\ = \frac{1}{{\left( {\frac{{8k}}{{15}}} \right)}}\int_{ - 1}^{1 - {x^2}} {\int_0^1 k } y(y)dydx\\ = \frac{{15k}}{{8k}}\int_{ - 1}^{1 - {x^2}} {\int_0^1 {{y^2}} } dydx\end{aligned}\)
Integrate with respect to \(y\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar y = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{{{y^3}}}{3}} \right)_0^{1 - {x^2}}} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\left( {\frac{{{{\left( {1 - {x^2}} \right)}^3}}}{3}} \right) - \left( {\frac{{{{(0)}^3}}}{3}} \right)} \right)} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{1}{3} - \frac{{3{x^2}}}{3} + \frac{{3{x^4}}}{3} - \frac{{{x^6}}}{3} - 0} \right)} dx\\ = \frac{{15}}{8}\int_{ - 1}^1 {\left( {\frac{1}{3} - {x^2} + {x^4} - \frac{{{x^6}}}{3}} \right)} dx\end{aligned}\)
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar y = \frac{{15}}{8}\left( {\frac{x}{3} - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} - \frac{{{x^7}}}{{3(7)}}} \right)_{ - 1}^1\\ = \frac{{15}}{8}\left( {\left( {\frac{{(1)}}{3} - \frac{{{{(1)}^3}}}{3} + \frac{{{{(1)}^5}}}{5} - \frac{{{{(1)}^7}}}{{21}}} \right) - \left( {\frac{{( - 1)}}{3} - \frac{{{{( - 1)}^3}}}{3} + \frac{{{{( - 1)}^5}}}{5} - \frac{{{{( - 1)}^7}}}{{21}}} \right)} \right)\\ = \frac{{15}}{8}\left( {\left( {\frac{1}{3} - \frac{1}{3} + \frac{1}{5} - \frac{1}{{21}}} \right) - \left( { - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{{21}}} \right)} \right)\\ = \frac{{15}}{8}\left( {\frac{2}{5} - \frac{2}{{21}}} \right)\end{aligned}\)
Further, simplify the terms as shown below,
\(\begin{aligned}{c}\bar y = \frac{{15}}{8}\left( {\frac{{32}}{{5(21)}}} \right)\\ = \frac{4}{7}\end{aligned}\)
The center of mass of lamina is \((\bar x,\bar y) = \left( {0,\frac{4}{7}} \right)\)
Thus, the total mass of lamina is \(\frac{{8k}}{{15}}\,{\rm{units}}\) and the center of mass of lamina is \(\left( {0,\frac{4}{7}} \right).\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!