Chapter 12: Q7E (page 749)
Find the image of the set S under the given transformation.
\begin{align} S &=\{(u,v)\mid 0u3,0v2\}; \\ x &=2u+3v \\ y &=u-v \\ \end{align}
Short Answer
The image of the set s under given is the rectangle region.
Chapter 12: Q7E (page 749)
Find the image of the set S under the given transformation.
\begin{align} S &=\{(u,v)\mid 0u3,0v2\}; \\ x &=2u+3v \\ y &=u-v \\ \end{align}
The image of the set s under given is the rectangle region.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral by reversing the order of integration
\(\int\limits_0^1 {\int\limits_{3y}^3 {{e^{{x^2}}}} dxdy} \)
\(\int\limits_{ - 2}^2 {\int\limits_0^{\sqrt {4 - {y^2}} } {f(x,y)dy} dx} \)
Let\({\rm{E}}\)be the solid in the first octant bounded by the cylinder\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\)and the planes\({\rm{y = z, x = 0}}\)and\({\rm{z = 0}}\)with the density function\({\rm{\rho (x,y,z) = 1 + x + y + z}}\). Use a computer algebra system to find the exact values of the following quantities for\({\rm{E}}\).
Where \({\rm{R}}\)is the region in the first quadrant enclosed by the circle\({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}{\rm{ = }}4\)and the lines\({\rm{x = 0 and y = x}}\).
Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
a.\(\left( {\sqrt {\rm{2}} {\rm{,3\pi /4,2}}} \right)\)
b.\(\left( {{\rm{1,1,1}}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.