Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sketch the region whose area is given by the integral and evaluate the integral.

\(\int\limits_{{\rm{\pi /2}}}^{\rm{\pi }} {\int\limits_{\rm{0}}^{{\rm{2 sin\theta }}} {{\rm{r dr d\theta }}} } \)

Short Answer

Expert verified

\(\int\limits_{\pi /2}^\pi {\int\limits_0^{2\sin \theta } {r{\rm{ }}dr{\rm{ }}d\theta } } = \frac{\pi }{2}\)

Step by step solution

01

Introduction.

The given integral is,

\(I = \int\limits_{\pi /2}^\pi {\int\limits_0^{2\sin \theta } {r{\rm{ }}dr{\rm{ }}d\theta } } \)

02

Evaluate the integral.

Integrating first on \(r\), we get

\(\begin{array}{l}I = \int\limits_{\pi /2}^\pi {\frac{1}{2}} \left. {{r^2}} \right|_0^{2\sin \theta }d\theta \\ = \int\limits_{\pi /2}^\pi {\frac{1}{2}} \left( {{2^2}{{\sin }^2}\theta - {0^1}} \right)d\theta \\ = \int\limits_{\pi /2}^\pi {2{{\sin }^2}\theta } {\rm{ }}d\theta \\{\sin ^2}\theta = \frac{{1 - \cos \left( {2\theta } \right)}}{2}\\\int\limits_{\pi /2}^\pi {2{{\sin }^2}\theta } {\rm{ }}d\theta = \int\limits_{\pi /2}^\pi {1 - \cos \left( {2\theta } \right)} {\rm{ }}d\theta \end{array}\)

Integrating on \(\theta \), we get

\(\begin{array}{l}I = \theta - \frac{1}{2}\sin \left. {2\theta } \right|_{\pi /2}^\pi \\ = \left( {\pi - 0} \right) - \left( {\frac{\pi }{2} - 0} \right)\\ = \pi - \frac{\pi }{2}\\ = \frac{\pi }{2}\end{array}\)

03

Sketch the region.

The region R whose area is given by \(I = \int\limits_{\pi /2}^\pi {\int\limits_0^{2\sin \theta } {r{\rm{ }}dr{\rm{ }}d\theta } } \) is

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free